Skip to main content

Microglia in Neurodegenerative Disorders

  • Protocol
  • First Online:
Microglia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2034))

Abstract

Microglia are the brain’s resident immune cells. Under physiological conditions, they participate in a myriad of processes mainly involved in housekeeping functions that promote tissue homeostasis. However, the triggering of an immune response is a common feature in neurodegenerative disorders. This shift in microglia cells toward a chronically activated phenotype contributing to neuronal dysfunction and cell death is of great interest nowadays. In this chapter, we review the implications of microglia activation in different neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14:463–477. https://doi.org/10.1038/nri3705

    Article  CAS  PubMed  Google Scholar 

  2. Gyoneva S, Davalos D, Biswas D et al (2014) Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia 62:1345–1360. https://doi.org/10.1002/glia.22686

    Article  PubMed  PubMed Central  Google Scholar 

  3. Venegas C, Kumar S, Franklin BS et al (2017) Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 552:355–361. https://doi.org/10.1038/nature25158

    Article  CAS  PubMed  Google Scholar 

  4. Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61:71–90. https://doi.org/10.1002/glia.22350

    Article  PubMed  Google Scholar 

  5. Block ML, Zecca L, Hong J (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69. https://doi.org/10.1038/nrn2038

    Article  CAS  PubMed  Google Scholar 

  6. Baron R, AA B, Nemirovsky A et al (2014) Accelerated microglial pathology is associated with Aβ plaques in mouse models of Alzheimer’s disease. Aging Cell:1–12. https://doi.org/10.1111/acel.12210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grabert K, Michoel T, Karavolos MH et al (2016) Microglial brain region—dependent diversity and selective regional sensitivities to aging. Nat Neurosci. https://doi.org/10.1038/nn.4222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tejera D, Heneka MT (2016) Microglia in Alzheimer’s disease: the good, the bad and the ugly. Curr Alzheimer Res:370–380

    Article  CAS  PubMed  Google Scholar 

  9. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

    Article  CAS  PubMed  Google Scholar 

  10. Ginhoux F, Greter M, Leboeuf M et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. https://doi.org/10.1126/science.1194637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goldmann T, Wieghofer P, Jordão MJC et al (2016) Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 17(7):797–805. https://doi.org/10.1038/ni.3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thion MS, Low D, Silvin A et al (2017) Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell:500–516. https://doi.org/10.1016/j.cell.2017.11.042

    Article  PubMed  PubMed Central  Google Scholar 

  13. Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758. https://doi.org/10.1038/nn1472

    Article  CAS  PubMed  Google Scholar 

  14. Gyoneva S, Swanger SA, Zhang J et al (2016) Altered motility of plaque-associated microglia in a model of Alzheimer’s disease. Neuroscience. https://doi.org/10.1016/j.neuroscience.2016.05.061

    Article  CAS  PubMed  Google Scholar 

  15. Tremblay M-È, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527. https://doi.org/10.1371/journal.pbio.1000527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schafer DP, Lehrman EK, Kautzman AG et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705. https://doi.org/10.1016/j.neuron.2012.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paolicelli RC, Bolasco G, Pagani F et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458

    Article  CAS  PubMed  Google Scholar 

  18. Parkhurst CN, Yang G, Ninan I et al (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–1609. https://doi.org/10.1016/j.cell.2013.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 2236:471–474

    Google Scholar 

  20. Hickman SE, Kingery ND, Ohsumi TK et al (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16:1896–1905. https://doi.org/10.1038/nn.3554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Butovsky O, Jedrychowski MP, Moore CS et al (2013) Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 17. https://doi.org/10.1038/nn.3599

    Article  PubMed  PubMed Central  Google Scholar 

  22. Keren-shaul H, Spinrad A, Weiner A et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease article a unique microglia type associated with restricting development of Alzheimer’s disease. Cell:1–15. https://doi.org/10.1016/j.cell.2017.05.018

    Article  PubMed  Google Scholar 

  23. Wendeln A-C, Degenhardt K, Kaurani L et al (2018) Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556:332–338. https://doi.org/10.1038/s41586-018-0023-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Joseph J, Cole G, Head E, Ingram D (2009) Nutrition, brain aging, and neurodegeneration. J Neurosci 29:12795–12801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Park J, Wetzel I, Marriott I et al (2018) A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat Neurosci. https://doi.org/10.1038/s41593-018-0175-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu S, Liu Y, Hao W et al (2012) TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J Immunol 188:1098–1107. https://doi.org/10.4049/jimmunol.1101121

    Article  CAS  PubMed  Google Scholar 

  27. Birch AM, Katsouri L, Sastre M (2014) Modulation of inflammation in transgenic models of Alzheimer’s disease. J Neuroinflammation 11:25. https://doi.org/10.1186/1742-2094-11-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vanaja SK, Rathinam VAK, Fitzgerald KA (2015) Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 25:308–315. https://doi.org/10.1016/j.tcb.2014.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10:241–247. https://doi.org/10.1038/ni.1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fink SL, Cookson BT (2006) Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 8:1812–1825. https://doi.org/10.1111/j.1462-5822.2006.00751.x

    Article  PubMed  Google Scholar 

  31. Walsh JG, Muruve DA, Power C (2014) Inflammasomes in the CNS. Nat Rev Neurosci 15(2):84–97. https://doi.org/10.1038/nrn3638

    Article  CAS  PubMed  Google Scholar 

  32. Lu A, Magupalli VG, Ruan J et al (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156:1193–1206. https://doi.org/10.1016/j.cell.2014.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Masumoto J, Taniguchi S, Ayukawa K et al (1999) ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J Biol Chem 274:33835–33838

    Article  CAS  PubMed  Google Scholar 

  34. Halle A, Hornung V, Petzold GC et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865. https://doi.org/10.1038/ni.1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cassel SL, Joly S, Sutterwala FS (2009) The NLRP3 inflammasome: a sensor of immune danger signals. Semin Immunol 21:194–198. https://doi.org/10.1016/j.smim.2009.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411. https://doi.org/10.1038/nri3452

    Article  CAS  PubMed  Google Scholar 

  37. Streit WJ (2004) Microglia and Alzheimer’s disease pathogenesis. J Neurosci Res 77:1–8. https://doi.org/10.1002/jnr.20093

    Article  CAS  PubMed  Google Scholar 

  38. Mackenzie IR (2000) Anti-inflammatory drugs and Alzheimer-type pathology in aging. Neurology 54:732–734

    Article  CAS  PubMed  Google Scholar 

  39. Guerreiro R, Wojtas A, Bras J et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127. https://doi.org/10.1056/NEJMoa1211851

    Article  CAS  PubMed  Google Scholar 

  40. Bradshaw EM, Chibnik LB, Keenan BT et al (2013) CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci 16:848–850. https://doi.org/10.1038/nn.3435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Cella M, Mallinson K et al (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell. https://doi.org/10.1016/j.cell.2015.01.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weggen S, Eriksen JL, Das P et al (2001) A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414:212–216. https://doi.org/10.1038/35102591

    Article  CAS  PubMed  Google Scholar 

  43. Heneka MT, Kummer MP, Stutz A et al (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678. https://doi.org/10.1038/nature11729

    Article  CAS  PubMed  Google Scholar 

  44. Asai H, Ikezu S, Tsunoda S et al (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18. https://doi.org/10.1038/nn.4132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Askew K, Li K, Olmos-Alonso A et al (2017) Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep 18:391–405. https://doi.org/10.1016/j.celrep.2016.12.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Condello C, Yuan P, Schain A, Grutzendler J (2015) Microglia constitute a barrier that prevents neurotoxic protofibrillar abeta42 hotspots around plaques around plaques. Nat Commun:1–14. https://doi.org/10.1038/ncomms7176

  47. Bisht K, Sharma KP, Lecours C et al (2016) Dark microglia: a new phenotype predominantly associated with pathological states. Glia. https://doi.org/10.1002/glia.22966

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tysnes O-B, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm 124:901–905. https://doi.org/10.1007/s00702-017-1686-y

    Article  PubMed  Google Scholar 

  49. Deng H, Wang P, Jankovic J (2018) The genetics of Parkinson disease. Ageing Res Rev 42:72–85. https://doi.org/10.1016/j.arr.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  50. Lecours C, Bordeleau M, Cantin L et al (2018) Microglial implication in Parkinson’s disease: loss of beneficial physiological roles or gain of inflammatory functions? Front Cell Neurosci 12:1–8. https://doi.org/10.3389/fncel.2018.00282

    Article  Google Scholar 

  51. Qin L, Wu X, Block ML et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 462:453–462. https://doi.org/10.1002/glia

    Article  Google Scholar 

  52. Sampson TR, Debelius JW, Thron T et al (2015) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167:1469–1480.e12. https://doi.org/10.1016/J.CELL.2016.11.018

    Article  Google Scholar 

  53. Hickman S, Izzy S, Sen P et al (2018) Microglia in neurodegeneration. Nat Neurosci 21:1359–1369. https://doi.org/10.1038/s41593-018-0242-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. MacKenzie IRA, Neumann M, Bigio EH et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4. https://doi.org/10.1007/s00401-009-0612-2

    Article  PubMed  Google Scholar 

  55. van Langenhove T, van der Zee J, van Broeckhoven C (2012) The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. Ann Med 44:817–828. https://doi.org/10.3109/07853890.2012.665471

    Article  CAS  PubMed  Google Scholar 

  56. Paolicelli RC, Jawaid A, Henstridge CM et al (2017) TDP-43 depletion in microglia promotes amyloid clearance but also induces synapse loss. Neuron:1–12. https://doi.org/10.1016/j.neuron.2017.05.037

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chang MC, Srinivasan K, Friedman BA et al (2017) Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation. J Exp Med 214(9):2611–2628. https://doi.org/10.1084/jem.20160999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arrant AE, Onyilo VC, Unger DE, Roberson ED (2018) Progranulin gene therapy improves lysosomal dysfunction and microglial pathology associated with frontotemporal dementia and neuronal ceroid lipofuscinosis. J Neurosci 38:3081–3017. https://doi.org/10.1523/JNEUROSCI.3081-17.2018

    Article  Google Scholar 

  59. Petrov D, Mansfield C, Moussy A, Hermine O (2017) ALS clinical trials review: 20 years of failure. are we any closer to registering a new treatment? Front Aging Neurosci 9:68. https://doi.org/10.3389/fnagi.2017.00068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lu C-H, Macdonald-Wallis C, Gray E et al (2015) Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology 84:2247–2257. https://doi.org/10.1212/WNL.0000000000001642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Talbot K (2002) Motor neurone disease. Postgrad Med J 78:513–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Frakes AE, Ferraiuolo L, Haidet-Phillips AM et al (2014) Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron 81:1009–1023. https://doi.org/10.1016/j.neuron.2014.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brettschneider J, Toledo JB, Van Deerlin VM et al (2012) Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS One 7:e39216. https://doi.org/10.1371/journal.pone.0039216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhao W, Beers DR, Henkel JS et al (2010) Extracellular mutant SOD1 induces microglial-mediated motoneuron injury. Glia 58:231–243. https://doi.org/10.1002/glia.20919

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Heneka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tejera, D., Heneka, M.T. (2019). Microglia in Neurodegenerative Disorders. In: Garaschuk, O., Verkhratsky, A. (eds) Microglia. Methods in Molecular Biology, vol 2034. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9658-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9658-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9657-5

  • Online ISBN: 978-1-4939-9658-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics