Skip to main content

In Vivo Phagocytosis Analysis of Amyloid Beta

  • Protocol
  • First Online:
Microglia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2034))

Abstract

Alzheimer’s disease (AD) pathology is characterized by the presence of extracellular amyloid beta (Aβ), tau hyperphosphorylation, and neuroinflammation. One striking feature in the disease is the clustering of microglia around Aβ plaques. These cells exhibit a highly and chronically activated phenotype, performing a variety of functions, phagocytosis being one of them. Since Aβ phagocytosis by microglia could represent a key aspect in the pathogenesis and progression of the disease, robust and comprehensive methods to evaluate this process are needed. Here, we describe a detailed flow cytometry-based protocol for the analysis of Aβ phagocytosis in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Winblad B, Amouyel P, Andrieu S et al (2016) Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol 15:455–532

    Article  Google Scholar 

  2. Sasaguri H, Nilsson P, Hashimoto S et al (2017) APP mouse models for Alzheimer’s disease preclinical studies. EMBO J 36:2473–2487

    Article  CAS  Google Scholar 

  3. Baruch K, Deczkowska A, Rosenzweig N et al (2016) PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer’s disease. Nat Med 22:135–137

    Article  CAS  Google Scholar 

  4. Heneka MT, Carson MJ, Khoury JE et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405

    Article  CAS  Google Scholar 

  5. Heneka MT, Kummer MP, Stutz A et al (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678

    Article  CAS  Google Scholar 

  6. Guerreiro R, Wojtas A, Bras J et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127

    Article  CAS  Google Scholar 

  7. Hollingworth P, Harold D, Sims R et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43:429–435

    Article  CAS  Google Scholar 

  8. Datta M, Staszewski O, Raschi E et al (2018) Histone deacetylases 1 and 2 regulate microglia function during development, homeostasis, and neurodegeneration in a context-dependent manner. Immunity 48:514–529.e6

    Article  CAS  Google Scholar 

  9. Keren-shaul H, Spinrad A, Weiner A et al (2017) Article a unique microglia type associated with restricting development of alzheimer ’ s disease article a unique microglia type associated with restricting development of alzheimer ’ s disease. Cell 169(7):1276–1290.e17

    Article  CAS  Google Scholar 

  10. Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  CAS  Google Scholar 

  11. Hickman SE, Kingery ND, Ohsumi TK et al (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16:1896–1905

    Article  CAS  Google Scholar 

  12. Condello C, Yuan P, Schain A, Grutzendler J (2015) Microglia constitute a barrier that prevents neurotoxic protofibrillar abeta42 hotspots around plaques around plaques. Nat Commun 6:6176

    Article  CAS  Google Scholar 

  13. Lucin KM, O’Brien CE, Bieri G et al (2013) Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron 79:873–886

    Article  CAS  Google Scholar 

  14. Paolicelli RC, Bolasco G, Pagani F et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458

    Article  CAS  Google Scholar 

  15. Czirr E, Castello NA, Mosher KI et al (2017) Microglial complement receptor 3 regulates brain Aβ levels through secreted proteolytic activity. J Exp Med 214(4):1081–1092

    Article  Google Scholar 

  16. Bradshaw EM, Chibnik LB, Keenan BT et al (2013) CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci 16:848–850

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Heneka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tejera, D., Heneka, M.T. (2019). In Vivo Phagocytosis Analysis of Amyloid Beta. In: Garaschuk, O., Verkhratsky, A. (eds) Microglia. Methods in Molecular Biology, vol 2034. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9658-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9658-2_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9657-5

  • Online ISBN: 978-1-4939-9658-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics