Skip to main content

In Vivo Visualization of Microglia Using Tomato Lectin

  • Protocol
  • First Online:
Microglia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2034))

Abstract

Plant lectins bind to carbohydrates, which are found on the surface of different immune and endothelial cells including microglia. Using commercially available conjugates of lectins with different fluorophores allows one-step detection and visualization of microglia in vivo. Here, we describe a protocol enabling the use of a specific plant lectin isolated from Lycopersicon esculentum. Tomato lectin enables high-quality labeling of microglial cells in vivo and is applicable in any mouse strain at any age of the experimental animal without the need of genetic labeling, which is associated with time- and resource-consuming procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20(11):4106–4114

    Article  CAS  PubMed  Google Scholar 

  2. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758

    Article  CAS  PubMed  Google Scholar 

  3. Biber K, Neumann H, Inoue K, Boddeke HW (2007) Neuronal 'On' and 'Off' signals control microglia. Trends Neurosci 30(11):596–602

    Article  CAS  Google Scholar 

  4. Paolicelli RC, Bisht K, Tremblay ME (2014) Fractalkine regulation of microglial physiology and consequences on the brain and behavior. Front Cell Neurosci 8:129

    Article  PubMed  Google Scholar 

  5. Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA, Weeber EJ, Bickford PC, Gemma C (2011) CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 31(45):16241–16250

    Article  CAS  PubMed  Google Scholar 

  6. Hirasawa T, Ohsawa K, Imai Y, Ondo Y, Akazawa C, Uchino S, Kohsaka S (2005) Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J Neurosci Res 81(3):357–362

    Article  CAS  PubMed  Google Scholar 

  7. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57(1):1–9

    Article  CAS  Google Scholar 

  8. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38(1):79–91

    Article  CAS  PubMed  Google Scholar 

  9. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, Hempstead BL, Littman DR, Gan WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596–1609

    Article  CAS  PubMed  Google Scholar 

  10. Goldmann T, Wieghofer P, Muller PF, Wolf Y, Varol D, Yona S, Brendecke SM, Kierdorf K, Staszewski O, Datta M, Luedde T, Heikenwalder M, Jung S, Prinz M (2013) A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci 16(11):1618–1626

    Article  CAS  Google Scholar 

  11. Tay TL, Mai D, Dautzenberg J, Fernandez-Klett F, Lin G, Sagar, Datta M, Drougard A, Stempfl T, Ardura-Fabregat A, Staszewski O, Margineanu A, Sporbert A, Steinmetz LM, Pospisilik JA, Jung S, Priller J, Grun D, Ronneberger O, Prinz M (2017) A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat Neurosci 20 (6):793–803

    Article  CAS  PubMed  Google Scholar 

  12. Akerblom M, Sachdeva R, Quintino L, Wettergren EE, Chapman KZ, Manfre G, Lindvall O, Lundberg C, Jakobsson J (2013) Visualization and genetic modification of resident brain microglia using lentiviral vectors regulated by microRNA-9. Nat Commun 4:1770

    Article  PubMed  Google Scholar 

  13. Brawek B, Liang Y, Savitska D, Li K, Fomin-Thunemann N, Kovalchuk Y, Zirdum E, Jakobsson J, Garaschuk O (2017) A new approach for ratiometric in vivo calcium imaging of microglia. Sci Rep 7(1):6030

    Article  PubMed  Google Scholar 

  14. Slifkin M, Doyle RJ (1990) Lectins and their application to clinical microbiology. Clin Microbiol Rev 3(3):197–218

    Article  CAS  PubMed  Google Scholar 

  15. Talan M (1984) Body temperature of C57BL/6J mice with age. Exp Gerontol 19(1):25–29

    Article  CAS  PubMed  Google Scholar 

  16. Eichhoff G, Brawek B, Garaschuk O (2011) Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo. Biochim Biophys Acta 1813(5):1014–1024

    Article  CAS  PubMed  Google Scholar 

  17. Murphy LA, Goldstein IJ (1977) Five alpha-D-galactopyranosyl-binding isolectins from Bandeiraea simplicifolia seeds. J Biol Chem 252(13):4739–4742

    CAS  Google Scholar 

  18. Streit WJ, Schulte BA, Balentine DJ, Spicer SS (1985) Histochemical localization of galactose-containing glycoconjugates in sensory neurons and their processes in the central and peripheral nervous system of the rat. J Histochem Cytochem 33(10):1042–1052

    Article  CAS  PubMed  Google Scholar 

  19. Schwendele B, Brawek B, Hermes M, Garaschuk O (2012) High resolution in vivo imaging of microglia using a versatile non genetically-encoded marker. Eur J Immunol 42(8):2193–2196

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by VolkswagenStiftung (grant no. 90233) to O.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Garaschuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brawek, B., Olmedillas del Moral, M., Garaschuk, O. (2019). In Vivo Visualization of Microglia Using Tomato Lectin. In: Garaschuk, O., Verkhratsky, A. (eds) Microglia. Methods in Molecular Biology, vol 2034. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9658-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9658-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9657-5

  • Online ISBN: 978-1-4939-9658-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics