Skip to main content

Engineering Antibodies with C-Terminal Sortase-Mediated Modification for Targeted Nanomedicine

  • Protocol
  • First Online:
Bioconjugation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2033))

Abstract

The current advances in nanoengineered materials coupled with the precise targeting capability of recombinant antibodies can create nanoscale diagnostics and therapeutics which show enhanced accumulation and extended retention at a target tissue. Smaller antibodies such as single-chain variable fragments (scFv) preserve the selective and strong binding of their parent antibody to their antigen with the benefits of low immunogenicity, more efficient tissue penetration and easy introduction of functional residues suitable for site-specific conjugation. This is of high importance as nonspecific antibody modification often involves attachment to free cysteine or lysine amino acids which may reside in the active site, leading to reduced antigen binding.

In this chapter, we outline a facile and versatile chemoenzymatic approach for production of targeted nanocarrier scFv conjugates using the bacterial trans-peptidase Sortase A (Srt A). Srt A efficiently mediates sequence-specific peptide ligation under mild conditions and has few undesirable side reactions. We first describe the production, purification and characterization of Srt A enzyme and a scFv construct which targets activated platelets, called scFvanti-GPIIb/IIIa. Following this, our protocol illustrates the chemoenzymatic modification of the antibody at the C-terminus with an orthogonal click chemistry linker. This avoids any random attachment to the biologically active antigen binding site of the antibody. Finally, we describe the modification of a nanoparticle surface with scFv attachment via two methods: (1) direct Sortase-mediated conjugation; or (2) a two-step system which consists of scFv Sortase-mediated conjugation followed by strain promoted azide-alkyne cycloaddition. Finally, methodology is described to assess the successful assembly of targeted particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal P, Bertozzi CR (2015) Site-specific antibody–drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug Chem 26(2):176–192

    Article  CAS  Google Scholar 

  2. Huston JS, McCartney J, Tai MS, Mottola-Hartshorn C, Jin D, Warren F, Keck P, Oppermann H (1993) Medical applications of single-chain antibodies. Int Rev Immunol 10(2–3):195–217

    Article  CAS  Google Scholar 

  3. Verhaar MJ, Keep PA, Hawkins RE, Robson L, Casey JL, Pedley B, Boden JA, Begent RHJ, Chester KA (1996) Technetium-99m radiolabeling using a phage-derived single-chain Fv with a C-terminal cysteine. J Nucl Med 37(5):868–872

    CAS  PubMed  Google Scholar 

  4. Marraffini LA, DeDent AC, Schneewind O (2006) Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol Mol Biol Rev 70(1):192–221

    Article  CAS  Google Scholar 

  5. Hagemeyer CE, Alt K, Johnston APR, Such GK, Ta HT, Leung MKM, Prabhu S, Wang X, Caruso F, Peter K (2015) Particle generation, functionalization and sortase A-mediated modification with targeting of single-chain antibodies for diagnostic and therapeutic use. Nat Protocols 10(1):90–105

    Article  CAS  Google Scholar 

  6. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021

    Article  CAS  Google Scholar 

  7. Jewett JC, Bertozzi CR (2010) Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev 39(4):1272–1279

    Article  CAS  Google Scholar 

  8. Schieber C, Bestetti A, Lim JP, Ryan AD, Nguyen T-L, Eldridge R, White AR, Gleeson PA, Donnelly PS, Williams SJ, Mulvaney P (2012) Conjugation of transferrin to azide-modified CdSe/ZnS core–shell quantum dots using cyclooctyne click chemistry. Angew Chem Int Ed 51(42):10523–10527

    Article  CAS  Google Scholar 

  9. Walkey CD, Chan WCW (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41(7):2780–2799

    Article  CAS  Google Scholar 

  10. Cui J, De Rose R, Alt K, Alcantara S, Paterson BM, Liang K, Hu M, Richardson JJ, Yan Y, Jeffery CM, Price RI, Peter K, Hagemeyer CE, Donnelly PS, Kent SJ, Caruso F (2015) Engineering poly(ethylene glycol) particles for improved biodistribution. ACS Nano 9(2):1571–1580

    Article  CAS  Google Scholar 

  11. Naguib YW, Rodriguez BL, Li X, Hursting SD, Williams RO III, Cui Z (2014) Solid lipid nanoparticle formulations of docetaxel prepared with high melting point triglycerides: in vitro and in vivo evaluation. Mol Pharm 11(4):1239–1249

    Article  CAS  Google Scholar 

  12. Björnmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F (2017) Bridging bio-nano science and cancer nanomedicine. ACS Nano 11(10):9594–9613

    Article  Google Scholar 

  13. O’Brien JR (1990) Shear-induced platelet aggregation. Lancet 335(8691):711–713

    Article  Google Scholar 

  14. Gawaz M, Langer H, May AE (2005) Platelets in inflammation and atherogenesis. J Clin Invest 115(12):3378–3384

    Article  CAS  Google Scholar 

  15. Alt K, Paterson BM, Ardipradja K, Schieber C, Buncic G, Lim B, Poniger SS, Jakoby B, Wang X, O'Keefe GJ, Tochon-Danguy HJ, Scott AM, Ackermann U, Peter K, Donnelly PS, Hagemeyer CE (2014) Single-chain antibody conjugated to a cage amine chelator and labeled with positron-emitting copper-64 for diagnostic imaging of activated platelets. Mol Pharm 11(8):2855–2863

    Article  CAS  Google Scholar 

  16. Alt K, Paterson BM, Westein E, Rudd SE, Poniger SS, Jagdale S, Ardipradja K, Connell TU, Krippner GY, Nair AKN, Wang X, Tochon-Danguy HJ, Donnelly PS, Peter K, Hagemeyer CE (2015) A versatile approach for the site-specific modification of recombinant antibodies using a combination of enzyme-mediated bioconjugation and click chemistry. Angew Chem Int Ed 54(26):7515–7519

    Article  CAS  Google Scholar 

  17. Ardipradja K, Yeoh SD, Alt K, O'Keefe G, Rigopoulos A, Howells DW, Scott AM, Peter K, Ackerman U, Hagemeyer CE (2014) Detection of activated platelets in a mouse model of carotid artery thrombosis with 18F-labeled single-chain antibodies. Nucl Med Biol 41(3):229–237

    Article  CAS  Google Scholar 

  18. Heidt T, Deininger F, Peter K, Goldschmidt J, Pethe A, Hagemeyer CE, Neudorfer I, Zirlik A, Weber WA, Bode C, Meyer PT, Behe M, von zur Muehlen C (2011) Activated platelets in carotid artery thrombosis in mice can be selectively targeted with a radiolabeled single-chain antibody. PLoS One 6(3):e18446

    Article  CAS  Google Scholar 

  19. Paterson BM, Alt K, Jeffery CM, Price RI, Jagdale S, Rigby S, Williams CC, Peter K, Hagemeyer CE, Donnelly PS (2014) Enzyme-mediated site-specific bioconjugation of metal complexes to proteins: sortase-mediated coupling of copper-64 to a single-chain antibody. Angew Chem Int Ed 53(24):6115–6119

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karen Alt or Christoph E. Hagemeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hashad, R.A., Lange, J.L., Tan, N.C.W., Alt, K., Hagemeyer, C.E. (2019). Engineering Antibodies with C-Terminal Sortase-Mediated Modification for Targeted Nanomedicine. In: Massa, S., Devoogdt, N. (eds) Bioconjugation. Methods in Molecular Biology, vol 2033. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9654-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9654-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9653-7

  • Online ISBN: 978-1-4939-9654-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics