Skip to main content

Characterization of Flowering Time Mutants

  • Protocol
  • First Online:
Phytochromes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2026))

  • 1460 Accesses

Abstract

Timing of flowering, which is adapted to the ambient environment, is one of the key traits to ensure the reproductive success of plants. Our current understanding of the complex genetic control network of this trait is mostly derived from the studies in the model plant species Arabidopsis thaliana. Arabidopsis thaliana is an annual facultative long-day plant, whose flowering time is controlled by numerous environmental and endogenous factors. Here we briefly summarize the genetic pathways that promote flowering of Arabidopsis and describe standard protocols to characterize the flowering time phenotype of Arabidopsis mutants under laboratory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Montaigu A, Tóth R, Coupland G (2010) Plant development goes like clockwork. Trends Genet 26:296–306

    Article  Google Scholar 

  2. Jarillo JA, Piñeiro M (2011) Timing is everything in plant development. The central role of floral repressors. Plant Sci 181:364–378

    Article  CAS  Google Scholar 

  3. Michaels SD (2009) Flowering time regulation produces much fruit. Curr Opin Plant Biol 12:75–80

    Article  CAS  Google Scholar 

  4. Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639

    Article  Google Scholar 

  5. Fornara F, de Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141:550, 550.e1–2

    Article  Google Scholar 

  6. Wellmer F, Riechmann JL (2010) Gene networks controlling the initiation of flower development. Trends Genet 26:519–527

    Article  CAS  Google Scholar 

  7. Hayama R, Coupland G (2004) The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol 135:677–684

    Article  CAS  Google Scholar 

  8. Imaizumi T, Kay SA (2006) Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci 11:550–558

    Article  CAS  Google Scholar 

  9. Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T (2015) Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol 66:441–464

    Article  CAS  Google Scholar 

  10. Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    Article  CAS  Google Scholar 

  11. Kim D-H, Doyle MR, Sung S, Amasino RM (2009) Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol 25:277–299

    Article  CAS  Google Scholar 

  12. Michaels SD, He Y, Scortecci KC, Amasino RM (2003) Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci U S A 100:10102–10107

    Article  CAS  Google Scholar 

  13. Song J, Angel A, Howard M, Dean C (2012) Vernalization - a cold-induced epigenetic switch. J Cell Sci 125:3723–3731

    CAS  PubMed  Google Scholar 

  14. Zografos BR, Sung S (2012) Vernalization-mediated chromatin changes. J Exp Bot 63:4343–4348

    Article  CAS  Google Scholar 

  15. Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol 100:403–408

    Article  CAS  Google Scholar 

  16. Harberd NP (2003) Relieving DELLA restraint. Science 299:1853–1854

    Article  CAS  Google Scholar 

  17. Schwechheimer C, Willige BC (2009) Shedding light on gibberellic acid signalling. Curr Opin Plant Biol 12:57–62

    Article  CAS  Google Scholar 

  18. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  CAS  Google Scholar 

  19. Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14:2366–2376

    Article  CAS  Google Scholar 

  20. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  CAS  Google Scholar 

  21. Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  CAS  Google Scholar 

  22. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  CAS  Google Scholar 

  23. Möller-Steinbach Y, Alexandre C, Hennig L (2010) Flowering time control. Methods Mol Biol 655:229–237

    Article  Google Scholar 

Download references

Acknowledgements

The work in authors’ laboratory is supported by grants of the National Institute of Health (GM56265 to CL), National Science Foundation of China (31500991 to QW) and National Science Foundation of Fujian Province in China (2017J01604 to XW). The authors thank the UCLA-FAFU (Fujian Agriculture and Forestry University) Joint Research Center, Haixia Institute of Science and Technology, and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology for institutional supports.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, X., Liu, Q., He, W., Lin, C., Wang, Q. (2019). Characterization of Flowering Time Mutants. In: Hiltbrunner, A. (eds) Phytochromes. Methods in Molecular Biology, vol 2026. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9612-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9612-4_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9611-7

  • Online ISBN: 978-1-4939-9612-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics