Skip to main content

Metadynamics to Enhance Sampling in Biomolecular Simulations

  • Protocol
  • First Online:
Biomolecular Simulations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2022))

Abstract

Molecular dynamics is a powerful simulation method to provide detailed atomic-scale insight into a range of biological processes including protein folding, biochemical reactions, ligand binding, and many others. Over the last several decades, enhanced sampling methods have been developed to address the large separation in time scales between a molecular dynamics simulation (usually microseconds or shorter) and the time scales of biological processes (often orders of magnitude longer). This chapter specifically focuses on the metadynamics family of methods, which achieves enhanced sampling through the introduction of a history-dependent bias potential that is based on one or more slow degrees of freedom, called collective variables. We introduce the method and its recent variants related to biomolecular studies and then discuss frontier areas of the method. A large part of this chapter is devoted to helping new users of the method understand how to choose metadynamics parameters properly and apply the method to their system of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci U S A 99(20):12562–12566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Laio A, Parrinello M (2006) Computing free energies and accelerating rare events with metadynamics. Lect Notes Phys 703:303–335

    Google Scholar 

  3. Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys 71(12):126601

    Article  Google Scholar 

  4. Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. WIREs Comput Mol Sci 1(5):826–843. https://doi.org/10.1002/wcms.31

    Article  CAS  Google Scholar 

  5. Valsson O, Tiwary P, Parrinello M (2016) Enhancing important fluctuations: rare events and metadynamics from a conceptual viewpoint. Annu Rev Phys Chem 67(1):159–184. https://doi.org/10.1146/annurev-physchem-040215-112229

    Article  CAS  PubMed  Google Scholar 

  6. Sutto L, Marsili S, Gervasio FL (2012) New advances in metadynamics. WIREs Comput Mol Sci 2(5):771–779. https://doi.org/10.1002/wcms.1103

    Article  CAS  Google Scholar 

  7. Abrams C, Bussi G (2014) Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration. Entropy 16(1):163

    Article  Google Scholar 

  8. Leone V, Marinelli F, Carloni P, Parrinello M (2010) Targeting biomolecular flexibility with metadynamics. Curr Opin Struct Biol 20(2):148–154

    Article  CAS  PubMed  Google Scholar 

  9. Barducci A, Pfaendtner J, Bonomi M (2015) Tackling sampling challenges in biomolecular simulations. In: Kukol A (ed) Molecular modeling of proteins. Springer, New York, NY, pp 151–171. https://doi.org/10.1007/978-1-4939-1465-4_8

    Chapter  Google Scholar 

  10. Furini S, Domene C (2016) Computational studies of transport in ion channels using metadynamics. BBA-Biomembranes 1858(7):1733–1740. https://doi.org/10.1016/j.bbamem.2016.02.015

    Article  CAS  PubMed  Google Scholar 

  11. Ensing B, De Vivo M, Liu Z, Moore P, Klein ML (2005) Metadynamics as a tool for exploring free energy landscapes of chemical reactions. Acc Chem Res 39(2):73–81. https://doi.org/10.1021/ar040198i

    Article  CAS  Google Scholar 

  12. Zheng S, Pfaendtner J (2015) Enhanced sampling of chemical and biochemical reactions with metadynamics. Mol Simulat 41(1–3):55–72

    Article  CAS  Google Scholar 

  13. Peters B (2017) Reaction rate theory and rare events. Elsevier, Ann Arbor

    Google Scholar 

  14. Peters B (2016) Reaction coordinates and mechanistic hypothesis tests. Annu Rev Phys Chem 67(1):669–690. https://doi.org/10.1146/annurev-physchem-040215-112215

    Article  CAS  PubMed  Google Scholar 

  15. Trzesniak D, Kunz APE, van Gunsteren WF (2007) A comparison of methods to compute the potential of mean force. ChemPhysChem 8:162–169. https://doi.org/10.1002/cphc.200600527

    Article  CAS  PubMed  Google Scholar 

  16. Torrie GM, Valleau JP (1977) Non-physical sampling distributions in Monte-Carlo free-energy estimation - umbrella sampling. J Comput Phys 23(2):187–199

    Article  Google Scholar 

  17. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1995) Multidimensional free-energy calculations using the weighted histogram analysis method. J Comput Chem 16(11):1339–1350

    Article  CAS  Google Scholar 

  18. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100:020603

    Article  PubMed  Google Scholar 

  19. Tiwary P, Parrinello M (2015) A time-independent free energy estimator for metadynamics. J Phys Chem B 119(3):736–742. https://doi.org/10.1021/jp504920s

    Article  CAS  PubMed  Google Scholar 

  20. Bonomi M, Barducci A, Parrinello M (2009) Reconstructing the equilibrium Boltzmann distribution from well-tempered metadynamics. J Comput Chem 30(11):1615–1621. https://doi.org/10.1002/jcc.21305

    Article  CAS  PubMed  Google Scholar 

  21. Branduardi D, Bussi G, Parrinello M (2012) Metadynamics with adaptive Gaussians. J Chem Theory Comput 8(7):2247–2254. https://doi.org/10.1021/ct3002464

    Article  CAS  PubMed  Google Scholar 

  22. Peters B (2010) Recent advances in transition path sampling: accurate reaction coordinates, likelihood maximization, and diffusive barrier crossing dynamics. Mol Simulat 36:1265–1281

    Article  CAS  Google Scholar 

  23. Raiteri P, Laio A, Gervasio FL, Micheletti C, Parrinello M (2006) Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. J Phys Chem B 110(8):3533–3539. https://doi.org/10.1021/jp054359r

    Article  CAS  PubMed  Google Scholar 

  24. Bussi G, Gervasio FL, Laio A, Parrinello M (2006) Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics. J Am Chem Soc 128:13435–13441. https://doi.org/10.1021/ja062463w

    Article  CAS  PubMed  Google Scholar 

  25. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  26. Piana S, Laio A (2007) A bias-exchange approach to protein folding. J Phys Chem B 111(17):4553–4559. https://doi.org/10.1021/jp0678731

    Article  CAS  PubMed  Google Scholar 

  27. Deighan M, Bonomi M, Pfaendtner J (2012) Efficient simulation of explicitly solvated proteins in the well-tempered ensemble. J Chem Theory Comput 8(7):2189–21982

    Article  CAS  PubMed  Google Scholar 

  28. Bonomi M, Parrinello M (2010) Enhanced sampling in the well-tempered ensemble. Phys Rev Lett 104(19):190601

    Article  CAS  PubMed  Google Scholar 

  29. Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G (2014) PLUMED 2: new feathers for an old bird. Comput Phys Commun 185(2):604–613

    Article  CAS  Google Scholar 

  30. Bonomi M, Branduardi D, Bussi G, Camilloni C, Provasi D, Raiteri P, Donadio D, Marinelli F, Pietrucci F, Broglia RA, Parrinello M (2009) PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun 180(10):1961–1972. https://doi.org/10.1016/j.cpc.2009.05.011

    Article  CAS  Google Scholar 

  31. Pfaendtner J, Bonomi M (2015) Efficient sampling of high-dimensional free-energy landscapes with parallel bias metadynamics. J Chem Theory Comput 11(11):5062–5067. https://doi.org/10.1021/acs.jctc.5b00846

    Article  CAS  PubMed  Google Scholar 

  32. Gil-Ley A, Bussi G (2015) Enhanced conformational sampling using replica exchange with collective-variable tempering. J Chem Theory Comput 11(3):1077–1085. https://doi.org/10.1021/ct5009087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sivia J (2006) Data analysis: a Bayesian tutorial. Oxford University Press, Oxford, UK

    Google Scholar 

  34. Spiwok V, Lipovová P, Králová B (2007) Metadynamics in essential coordinates: free energy simulation of conformational changes. J Phys Chem B 111(12):3073–3076. https://doi.org/10.1021/jp068587c

    Article  CAS  PubMed  Google Scholar 

  35. Tribello GA, Ceriotti M, Parrinello M (2010) A self-learning algorithm for biased molecular dynamics. Proc Natl Acad Sci U S A 107(41):17509–17514. https://doi.org/10.1073/pnas.1011511107

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tribello GA, Ceriotti M, Parrinello M (2012) Using sketch-map coordinates to analyze and bias molecular dynamics simulations. Proc Natl Acad Sci U S A 109(14):5196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tiwary P, Berne BJ (2016) Spectral gap optimization of order parameters for sampling complex molecular systems. Proc Natl Acad Sci U S A 113(11):2839–2844. https://doi.org/10.1073/pnas.1600917113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sultan M, Pande VS (2017) tICA-metadynamics: accelerating metadynamics by using kinetically selected collective variables. J Chem Theory Comput 13(6):2440–2447. https://doi.org/10.1021/acs.jctc.7b00182

    Article  CAS  Google Scholar 

  39. Marinelli F, Pietrucci F, Laio A, Piana S (2009) A kinetic model of Trp-cage folding from multiple biased molecular dynamics simulations. PLoS Comput Biol 5(8):e1000452. https://doi.org/10.1371/journal.pcbi.1000452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tiwary P, Parrinello M (2013) From metadynamics to dynamics. Phys Rev Lett 111(23):230602

    Article  PubMed  Google Scholar 

  41. Voter AF (1997) Hyperdynamics: accelerated molecular dynamics of infrequent events. Phys Rev Lett 78(20):3908–3911

    Article  CAS  Google Scholar 

  42. Salvalaglio M, Tiwary P, Parrinello M (2014) Assessing the reliability of the dynamics reconstructed from metadynamics. J Chem Theory Comput 10(4):1420–1425. https://doi.org/10.1021/ct500040r

    Article  CAS  PubMed  Google Scholar 

  43. Tung H-J, Pfaendtner J (2016) Kinetics and mechanism of ionic-liquid induced protein unfolding: application to the model protein HP35. Mol Syst Des Eng 1:382–390. https://doi.org/10.1039/C6ME00047A

    Article  CAS  Google Scholar 

  44. Tiwary P, Limongelli V, Salvalaglio M, Parrinello M (2015) Kinetics of protein–ligand unbinding: predicting pathways, rates, and rate-limiting steps. Proc Natl Acad Sci U S A 112(5):E386–E391. https://doi.org/10.1073/pnas.1424461112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tiwary P, Mondal J, Morrone JA, Berne BJ (2015) Role of water and steric constraints in the kinetics of cavity–ligand unbinding. Proc Natl Acad Sci U S A 112(39):12015–12019. https://doi.org/10.1073/pnas.1516652112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Y, Martins JM, Lindorff-Larsen K (2017) Biomolecular conformational changes and ligand binding: from kinetics to thermodynamics. Chem Sci 8(9):6466–6473. https://doi.org/10.1039/C7SC01627A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sprenger KG, Pfaendtner J (2016) Chapter Sixteen - Using molecular simulation to study biocatalysis in ionic liquids. In: Gregory AV (ed) Methods in enzymology, vol 577. Academic, London, pp 419–441

    Google Scholar 

  48. Wang Y, Valsson O, Tiwary P, Parrinello M, Lindorff-Larsen K (2018) Frequency adaptive metadynamics for the calculation of rare-event kinetics. J Chem Phys 149(7):072309. https://doi.org/10.1063/1.5024679

    Article  CAS  PubMed  Google Scholar 

  49. Camilloni C, Cavalli A, Vendruscolo M (2013) Replica-averaged metadynamics. J Chem Theory Comput 9(12):5610–5617. https://doi.org/10.1021/ct4006272

    Article  CAS  PubMed  Google Scholar 

  50. White AD, Voth GA (2014) Efficient and minimal method to bias molecular simulations with experimental data. J Chem Theory Comput 10(8):3023–3030. https://doi.org/10.1021/ct500320c

    Article  CAS  PubMed  Google Scholar 

  51. White AD, Dama JF, Voth GA (2015) Designing free energy surfaces that match experimental data with metadynamics. J Chem Theory Comput 11(6):2451–2460. https://doi.org/10.1021/acs.jctc.5b00178

    Article  CAS  PubMed  Google Scholar 

  52. Marinelli F, Faraldo-Gómez José D (2015) Ensemble-biased metadynamics: a molecular simulation method to sample experimental distributions. Biophys J 108(12):2779–2782. https://doi.org/10.1016/j.bpj.2015.05.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gil-Ley A, Bottaro S, Bussi G (2016) Empirical corrections to the amber RNA force field with target metadynamics. J Chem Theory Comput 12(6):2790–2798. https://doi.org/10.1021/acs.jctc.6b00299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bonomi M, Camilloni C, Vendruscolo M (2016) Metadynamic metainference: enhanced sampling of the metainference ensemble using metadynamics. Sci Rep 6:31232. https://doi.org/10.1038/srep31232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Albesa-Jove D, Romero-Garcia J, Sancho-Vaello E, Contreras FX, Rodrigo-Unzueta A, Comino N, Carreras-Gonzalez A, Arrasate P, Urresti S, Biarnes X, Planas A, Guerin ME (2017) Structural snapshots and loop dynamics along the catalytic cycle of glycosyltransferase GpgS. Structure 25(7):1034. https://doi.org/10.1016/j.str.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  56. Ardevol A, Iglesias-Fernandez J, Rojas-Cervellera V, Rovira C (2016) The reaction mechanism of retaining glycosyltransferases. Biochem Soc Trans 44:51–60. https://doi.org/10.1042/bst20150177

    Article  CAS  PubMed  Google Scholar 

  57. Binette V, Cote S, Mousseau N (2016) Free-energy landscape of the amino-terminal fragment of Huntingtin in aqueous solution. Biophys J 110(5):1075–1088. https://doi.org/10.1016/j.bpj.2016.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bonetti D, Camilloni C, Visconti L, Longhi S, Brunori M, Vendruscolo M, Gianni S (2016) Identification and structural characterization of an intermediate in the folding of the measles virus X domain. J Biol Chem 291(20):10886. https://doi.org/10.1074/jbc.M116.721126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brandt AML, Batista PR, Souza-Silva F, Alves CR, Caffarena ER (2016) Exploring the unbinding of Leishmania (L.) amazonensis CPB derived-epitopes from H2 MHC class I proteins. Proteins 84(4):473–487. https://doi.org/10.1002/prot.24994

    Article  CAS  PubMed  Google Scholar 

  60. Camilloni C, Vendruscolo M (2015) Using pseudocontact shifts and residual dipolar couplings as exact NMR restraints for the determination of protein structural ensembles. Biochemistry 54(51):7470–7476. https://doi.org/10.1021/acs.biochem.5b01138

    Article  CAS  PubMed  Google Scholar 

  61. Casillas-Ituarte NN, Cruz CHB, Lins RD, DiBartola AC, Howard J, Liang XW, Hook M, Viana IFT, Sierra-Hernandez MR, Lower SK (2017) Amino acid polymorphisms in the fibronectin-binding repeats of fibronectin-binding protein A affect bond strength and fibronectin conformation. J Biol Chem 292(21):8797–8810. https://doi.org/10.1074/jbc.M117.786012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chow ML, Troussicot L, Martin M, Doumeche B, Guilliere F, Lancelin JM (2016) Predicting and understanding the enzymatic inhibition of human peroxiredoxin 5 by 4-substituted pyrocatechols by combining funnel metadynamics, solution NMR, and steady-state kinetics. Biochemistry 55(24):3469–3480. https://doi.org/10.1021/acs.biochem.6b00367

    Article  CAS  PubMed  Google Scholar 

  63. Comitani F, Melis C, Molteni C (2015) Elucidating ligand binding and channel gating mechanisms in pentameric ligand-gated ion channels by atomistic simulations. Biochem Soc Trans 43:151–156. https://doi.org/10.1042/bst20140259

    Article  CAS  PubMed  Google Scholar 

  64. Cunha RA, Bussi G (2017) Unraveling Mg2+-RNA binding with atomistic molecular dynamics. RNA 23(5):628–638. https://doi.org/10.1261/rna.060079.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. D’Agostino T, Salis S, Ceccarelli M (2016) A kinetic model for molecular diffusion through pores. BBA-Biomembranes 1858(7):1772–1777. https://doi.org/10.1016/j.bbamem.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  66. Darre L, Domene C (2015) Binding of capsaicin to the TRPV1 ion channel. Mol Pharm 12(12):4454–4465. https://doi.org/10.1021/acs.molpharmaceut.5b00641

    Article  CAS  PubMed  Google Scholar 

  67. della Longa S, Arcovito A (2016) A dynamic picture of the early events in nociceptin binding to the NOP receptor by metadynamics. Biophys J 111(6):1203–1213. https://doi.org/10.1016/j.bpj.2016.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Della-Longa S, Arcovito A (2015) Intermediate states in the binding process of folic acid to folate receptor alpha: insights by molecular dynamics and metadynamics. J Comput Aided Mol Des 29(1):23–35. https://doi.org/10.1007/s10822-014-9801-8

    Article  CAS  PubMed  Google Scholar 

  69. Deriu MA, Grasso G, Tuszynski JA, Gallo D, Morbiducci U, Danani A (2016) Josephin domain structural conformations explored by metadynamics in essential coordinates. PLoS Comput Biol 12(1):e1004699. https://doi.org/10.1371/journal.pcbi.1004699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dore AS, Bortolato A, Hollenstein K, Cheng RKY, Read RJ, Marshall FH (2017) Decoding corticotropin-releasing factor receptor type 1 crystal structures. Curr Mol Pharmacol 10(4):334–344. https://doi.org/10.2174/1874467210666170110114727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Formoso E, Mujika JI, Grabowski SJ, Lopez X (2015) Aluminum and its effect in the equilibrium between folded/unfolded conformation of NADH. J Inorg Biochem 152:139–146. https://doi.org/10.1016/j.jinorgbio.2015.08.017

    Article  CAS  PubMed  Google Scholar 

  72. Han MZ, Xu J, Ren Y, Li JH (2016) Simulation of coupled folding and binding of an intrinsically disordered protein in explicit solvent with metadynamics. J Mol Graph Model 68:114–127. https://doi.org/10.1016/j.jmgm.2016.06.015

    Article  CAS  PubMed  Google Scholar 

  73. Han MZ, Xu J, Ren Y, Li JH (2016) Simulations of flow induced structural transition of the beta-switch region of glycoprotein Ib alpha. Biophys Chem 209:9–20. https://doi.org/10.1016/j.bpc.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  74. Heller GT, Aprilel FA, Bonomi M, Camilloni C, De Simone A, Vendruscolo M (2017) Sequence specificity in the entropy-driven binding of a small molecule and a disordered peptide. J Mol Biol 429(18):2772–2779. https://doi.org/10.1016/j.jmb.2017.07.016

    Article  CAS  PubMed  Google Scholar 

  75. Hultqvist G, Aberg E, Camilloni C, Sundell GN, Andersson E, Dogan J, Chi CN, Vendruscolo M, Jemth P (2017) Emergence and evolution of an interaction between intrinsically disordered proteins. elife 6:e16059. https://doi.org/10.7554/eLife.16059

    Article  PubMed  PubMed Central  Google Scholar 

  76. Iglesias-Fernandez J, Hancock SM, Lee SS, Khan M, Kirkpatrick J, Oldham NJ, McAuley K, Fordham-Skelton A, Rovira C, Davis BG (2017) A front-face ‘S(N)i synthase’ engineered from a retaining ‘double-S(N)2’ hydrolase. Nat Chem Biol 13(8):874. https://doi.org/10.1038/nchembio.2394

    Article  CAS  PubMed  Google Scholar 

  77. Isabella VM, Campbell AJ, Manchester J, Sylvester M, Nayar AS, Ferguson KE, Tommasi R, Miller AA (2015) Toward the rational design of carbapenem uptake in Pseudomonas aeruginosa. Chem Biol 22(4):535–547. https://doi.org/10.1016/j.chembiol.2015.03.018

    Article  CAS  PubMed  Google Scholar 

  78. Jana K, Bandyopadhyay T, Ganguly B (2017) Designed inhibitors with hetero linkers for gastric proton pump H+,K+-ATPase: steered molecular dynamics and metadynamics studies. J Mol Graph Model 78:129–138. https://doi.org/10.1016/j.jmgm.2017.10.006

    Article  CAS  PubMed  Google Scholar 

  79. Jorgensen C, Furini S, Domene C (2016) Energetics of ion permeation in an open-activated TRPV1 channel. Biophys J 111(6):1214–1222. https://doi.org/10.1016/j.bpj.2016.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kukic P, Leung HTA, Bemporad F, Aprile FA, Kumita JR, De Simone A, Camilloni C, Vendruscolo M (2015) Structure and dynamics of the integrin LFA-1 I-domain in the inactive state underlie its inside-out/outside-in signaling and allosteric mechanisms. Structure 23(4):745–753. https://doi.org/10.1016/j.str.2014.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kukic P, Lundstrom P, Camilloni C, Evenas J, Akke M, Vendruscolo M (2016) Structural insights into the calcium-mediated allosteric transition in the C-terminal domain of calmodulin from nuclear magnetic resonance measurements. Biochemistry 55(1):19–28. https://doi.org/10.1021/acs.biochem.5b00961

    Article  CAS  PubMed  Google Scholar 

  82. Li DC, Liu MS, Ji BH (2015) Mapping the dynamics landscape of conformational transitions in enzyme: the adenylate kinase case. Biophys J 109(3):647–660. https://doi.org/10.1016/j.bpj.2015.06.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Luciani P, de Mendoza AEH, Casalini T, Lang S, Atrott K, Spalinger MR, Pratsinis A, Sobek J, Frey-Wagner I, Schumacher J, Leroux JC, Rogler G (2017) Gastroresistant oral peptide for fluorescence imaging of colonic inflammation. J Control Release 262:118–126. https://doi.org/10.1016/j.jconrel.2017.07.024

    Article  CAS  PubMed  Google Scholar 

  84. Meloni R, Tiana G (2017) Thermodynamic and structural effect of urea and guanidine chloride on the helical and on a hairpin fragment of GB1 from molecular simulations. Proteins 85(4):753–763. https://doi.org/10.1002/prot.25255

    Article  CAS  PubMed  Google Scholar 

  85. Mlynsky V, Bussi G (2017) Understanding in-line probing experiments by modeling cleavage of nonreactive RNA nucleotides. RNA 23(5):712–720. https://doi.org/10.1261/rna.060442.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Oparin RD, Moreau M, De Walle I, Paolantoni M, Idrissi A, Kiselev MG (2015) The interplay between the paracetamol polymorphism and its molecular structures dissolved in supercritical CO2 in contact with the solid phase: in situ vibration spectroscopy and molecular dynamics simulation analysis. Eur J Pharm Sci 77:48–59. https://doi.org/10.1016/j.ejps.2015.05.016

    Article  CAS  PubMed  Google Scholar 

  87. Panczyk K, Plazinski W (2018) Pyranose ring puckering in aldopentoses, ketohexoses and deoxyaldohexoses. A molecular dynamics study. Carbohydr Res 455:62–70. https://doi.org/10.1016/j.carres.2017.11.011

    Article  CAS  PubMed  Google Scholar 

  88. Pietropaolo A, Pierri CL, Palmieri F, Klingenberg M (2016) The switching mechanism of the mitochondrial ADP/ATP carrier explored by free-energy landscapes. BBA-Bioenergetics 1857(6):772–781. https://doi.org/10.1016/j.bbabio.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  89. Pietropaolo A, Satriano C, Strano G, La Mendola D, Rizzarelli E (2015) Different zinc(II) complex species and binding modes at A beta N-terminus drive distinct long range cross-talks in the A beta monomers. J Inorg Biochem 153:367–376. https://doi.org/10.1016/j.jinorgbio.2015.08.013

    Article  CAS  PubMed  Google Scholar 

  90. Plazinski W, Drach M (2015) The influence of the hexopyranose ring geometry on the conformation of glycosidic linkages investigated using molecular dynamics simulations. Carbohydr Res 415:17–27. https://doi.org/10.1016/j.carres.2015.07.018

    Article  CAS  PubMed  Google Scholar 

  91. Rather MA, Basha SH, Bhat IA, Sharma N, Nandanpawar P, Badhe M, Gireesh-Babu P, Chaudhari A, Sundaray JK, Sharma R (2017) Characterization, molecular docking, dynamics simulation and metadynamics of kisspeptin receptor with kisspeptin. Int J Biol Macromol 101:241–253. https://doi.org/10.1016/j.ijbiomac.2017.03.102

    Article  CAS  PubMed  Google Scholar 

  92. Roy S, Karmakar T, Rao VSP, Nagappa LK, Balasubramanian S, Balaram H (2015) Slow ligand-induced conformational switch increases the catalytic rate in Plasmodium falciparum hypoxanthine guanine xanthine phosphoribosyltransferase. Mol BioSyst 11(5):1410–1424. https://doi.org/10.1039/c5mb00136f

    Article  CAS  PubMed  Google Scholar 

  93. Saeedi M, Lyubartsev AP, Jalili S (2017) Anesthetics mechanism on a DMPC lipid membrane model: insights from molecular dynamics simulations. Biophys Chem 226:1–13. https://doi.org/10.1016/j.bpc.2017.03.006

    Article  CAS  PubMed  Google Scholar 

  94. Shang Y, Yeatman HR, Provasi D, Alt A, Christopoulos A, Canals M, Filizola M (2016) Proposed mode of binding and action of positive allosteric modulators at opioid receptors. ACS Chem Biol 11(5):1220–1229. https://doi.org/10.1021/acschembio.5b00712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sharma N, Sonavane U, Joshi R (2017) Differentiating the pre-hydrolysis states of wild-type and A59G mutant HRas: an insight through MD simulations. Comput Biol Chem 69:96–109. https://doi.org/10.1016/j.compbiolchem.2017.05.008

    Article  CAS  PubMed  Google Scholar 

  96. Shrestha P, Wereszczynski J (2016) Discerning the catalytic mechanism of Staphylococcus aureus sortase A with QM/MM free energy calculations. J Mol Graph Model 67:33–43. https://doi.org/10.1016/j.jmgm.2016.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Singh R, Bansal R, Rathore AS, Goel G (2017) Equilibrium ensembles for insulin folding from bias-exchange metadynamics. Biophys J 112(8):1571–1585. https://doi.org/10.1016/j.bpj.2017.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Timmers L, Neto AMS, Montalvao RW, Basso LA, Santos DS, de Souza ON (2017) EPSP synthase flexibility is determinant to its function: computational molecular dynamics and metadynamics studies. J Mol Model 23(7):197. https://doi.org/10.1007/s00894-017-3372-2

    Article  CAS  PubMed  Google Scholar 

  99. Wang J, Sun LF, Cui WW, Zhao WS, Ma XF, Li B, Liu Y, Yang Y, Hu YM, Huang LD, Cheng XY, Li LY, Lu XY, Tian Y, Yu Y (2017) Intersubunit physical couplings fostered by the left flipper domain facilitate channel opening of P2X4 receptors. J Biol Chem 292(18):7619–7635. https://doi.org/10.1074/jbc.M116.771121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang Y, Papaleo E, Lindorff-Larsen K (2016) Mapping transiently formed and sparsely populated conformations on a complex energy landscape. elife 5:e17505. https://doi.org/10.7554/elife.17505

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yang C, Kulkarni M, Lim M, Pak Y (2017) In silico direct folding of thrombin-binding aptamer G-quadruplex at all-atom level. Nucleic Acids Res 45(22):12648–12656. https://doi.org/10.1093/nar/gkx1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang RT, Erler J, Langowski J (2017) Histone acetylation regulates chromatin accessibility: role of H4K16 in inter-nucleosome Interaction. Biophys J 112(3):450–459. https://doi.org/10.1016/j.bpj.2016.11.015

    Article  CAS  PubMed  Google Scholar 

  103. Zhao HC, Palencia A, Seiradake E, Ghaemi Z, Cusack S, Luthey-Schulten Z, Martinis S (2015) Analysis of the resistance mechanism of a benzoxaborole inhibitor reveals insight into the leucyl-tRNA synthetase editing mechanism. ACS Chem Biol 10(10):2277–2285. https://doi.org/10.1021/acschembio.5b00291

    Article  CAS  PubMed  Google Scholar 

  104. Laio A, Rodriguez-Fortea A, Gervasio FL, Ceccarelli M, Parrinello M (2005) Assessing the accuracy of metadynamics. J Phys Chem B 109(14):6714–6721. https://doi.org/10.1021/jp045424k

    Article  CAS  PubMed  Google Scholar 

  105. Baker M, Penny D (2016) Is there a reproducibility crisis? Nature 533:452

    Article  CAS  PubMed  Google Scholar 

  106. Prakash A, Baer MD, Mundy CJ, Pfaendtner J (2018) Peptoid backbone flexibility dictates its interaction with water and surfaces: a molecular dynamics investigation. Biomacromolecules. https://doi.org/10.1021/acs.biomac.7b01813

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The author gratefully acknowledges the help of Kayla Sprenger and Sarah Alamdari in providing detailed feedback on a draft of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Pfaendtner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pfaendtner, J. (2019). Metadynamics to Enhance Sampling in Biomolecular Simulations. In: Bonomi, M., Camilloni, C. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 2022. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9608-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9608-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9607-0

  • Online ISBN: 978-1-4939-9608-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics