Skip to main content

Networking in Biology: The Hybrid Rat Diversity Panel

  • Protocol
  • First Online:
Rat Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2018))

Abstract

One of the most fruitful resources for systems genetic studies of nonhuman mammals is a panel of inbred strains that exhibits significant genetic diversity between strains but genetic stability (isogenicity) within strains. These characteristics allow for fine mapping of complex phenotypes (QTLs) and provide statistical power to identify loci which contribute nominally to the phenotype. This type of resource also allows the planning and performance of investigations using the same genetic backgrounds over several generations of the test animals. Often, rats are preferred over mice for physiologic and behavioral studies because of their larger size and more distinguishable anatomy (particularly for their central nervous system). The Hybrid Rat Diversity Panel (HRDP) is a panel of inbred rat strains, which combines two recombinant inbred panels (the HXB/BXH, 30 strains; the LEXF/FXLE, 34 strains and 35 more strains of inbred rats which were selected for genetic diversity, based on their fully sequenced genomes and/or thorough genotyping). The genetic diversity and statistical power of this panel for mapping studies rivals or surpasses currently available panels in mouse. The genetic stability of this panel makes it particularly suitable for collection of high-throughput omics data as relevant technology becomes available for engaging in truly integrative systems biology. The PhenoGen website (http://phenogen.org) is the repository for the initial transcriptome data, making the raw data, the processed data, and the analysis results, e.g., organ-specific protein coding and noncoding transcripts, isoform analysis, expression quantitative trait loci, and co-expression networks, available to the research public. The data sets and tools being developed will complement current efforts to analyze the human transcriptome and its genetic controls (the Genotype-Tissue Expression Project (GTEx)) and allow for dissection of genetic networks that predispose to particular phenotypes and gene-by-environment interactions that are difficult or even impossible to study in humans. The HRDP is an essential population for exploring truly integrative systems genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hancock DB, Markunas CA, Bierut LJ, Johnson EO (2018) Human genetics of addiction: new insights and future directions. Curr Psychiatry Rep 20(2):8. https://doi.org/10.1007/s11920-018-0873-3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dodoo SN, Benjamin IJ (2017) Genomic approaches to hypertension. Cardiol Clin 35(2):185–196. https://doi.org/10.1016/j.ccl.2016.12.001

    Article  PubMed  Google Scholar 

  3. Heath AC, Whitfield JB, Martin NG, Pergadia ML, Goate AM, Lind PA et al (2011) A quantitative-trait genome-wide association study of alcoholism risk in the community: findings and implications. Biol Psychiatry 70(6):513–518. https://doi.org/10.1016/j.biopsych.2011.02.028

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hong S, Kim Y, Park T (2014) Practical issues in screening and variable selection in genome-wide association analysis. Cancer Informat 13(Suppl 7):55–65. https://doi.org/10.4137/CIN.S16350

    Article  Google Scholar 

  5. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH et al (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11(6):446–450. https://doi.org/10.1038/nrg2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schierding W, Antony J, Cutfield WS, Horsfield JA, O’Sullivan JM (2016) Intergenic GWAS SNPs are key components of the spatial and regulatory network for human growth. Hum Mol Genet 25(15):3372–3382. https://doi.org/10.1093/hmg/ddw165

    Article  CAS  PubMed  Google Scholar 

  7. Chen J, Tian W (2016) Explaining the disease phenotype of intergenic SNP through predicted long range regulation. Nucleic Acids Res 44(18):8641–8654. https://doi.org/10.1093/nar/gkw519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ballantyne RL, Zhang X, Nunez S, Xue C, Zhao W, Reed E et al (2016) Genome-wide interrogation reveals hundreds of long intergenic noncoding RNAs that associate with cardiometabolic traits. Hum Mol Genet 25(14):3125–3141. https://doi.org/10.1093/hmg/ddw154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Civelek M, Lusis AJ (2014) Systems genetics approaches to understand complex traits. Nat Rev Genet 15(1):34–48. https://doi.org/10.1038/nrg3575

    Article  CAS  PubMed  Google Scholar 

  10. Moreno-Moral A, Petretto E (2016) From integrative genomics to systems genetics in the rat to link genotypes to phenotypes. Dis Model Mech 9(10):1097–1110. https://doi.org/10.1242/dmm.026104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. GTEx Consortium (2015) Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348(6235):648–660. https://doi.org/10.1126/science.1262110

    Article  CAS  PubMed Central  Google Scholar 

  12. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ (2010) Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet 6(4):e1000888. https://doi.org/10.1371/journal.pgen.1000888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nica AC, Dermitzakis ET (2013) Expression quantitative trait loci: present and future. Philos Trans R Soc Lond Ser B Biol Sci 368(1620):20120362. https://doi.org/10.1098/rstb.2012.0362

    Article  CAS  Google Scholar 

  14. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article17. https://doi.org/10.2202/1544-6115.1128

    Article  PubMed  Google Scholar 

  15. Dong J, Horvath S (2007) Understanding network concepts in modules. BMC Syst Biol 1:24. https://doi.org/10.1186/1752-0509-1-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Farber CR, Lusis AJ (2008) Integrating global gene expression analysis and genetics. Adv Genet 60:571–601. https://doi.org/10.1016/S0065-2660(07)00420-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. GTEx Consortium (2013) The Genotype-Tissue Expression (GTEx) project. Nat Genet 45(6):580–585. https://doi.org/10.1038/ng.2653

    Article  CAS  Google Scholar 

  18. eGTEx Project (2017) Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease. Nat Genet 49(12):1664–1670. https://doi.org/10.1038/ng.3969

    Article  CAS  Google Scholar 

  19. Reuveni E, Birney E, Gross CT (2010) The consequence of natural selection on genetic variation in the mouse. Genomics 95(4):196–202. https://doi.org/10.1016/j.ygeno.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  20. Odet F, Pan W, Bell TA, Goodson SG, Stevans AM, Yun Z et al (2015) The founder strains of the collaborative cross express a complex combination of advantageous and deleterious traits for male reproduction. G3 5(12):2671–2683. https://doi.org/10.1534/g3.115.020172

    Article  CAS  PubMed  Google Scholar 

  21. Pravenec M, Klir P, Kren V, Zicha J, Kunes J (1989) An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. J Hypertens 7(3):217–221

    Article  CAS  Google Scholar 

  22. Pravenec M, Kren V, Landa V, Mlejnek P, Musilova A, Silhavy J et al (2014) Recent progress in the genetics of spontaneously hypertensive rats. Physiol Res 63(Suppl 1):S1–S8

    CAS  PubMed  Google Scholar 

  23. Saba LM, Flink SC, Vanderlinden LA, Israel Y, Tampier L, Colombo G et al (2015) The sequenced rat brain transcriptome—its use in identifying networks predisposing alcohol consumption. FEBS J 282(18):3556–3578. https://doi.org/10.1111/febs.13358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vanderlinden LA, Saba LM, Printz MP, Flodman P, Koob G, Richardson HN et al (2014) Is the alcohol deprivation effect genetically mediated? Studies with HXB/BXH recombinant inbred rat strains. Alcohol Clin Exp Res 38(7):2148–2157. https://doi.org/10.1111/acer.12471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lusk R, Saba LM, Vanderlinden LA, Zidek V, Silhavy J, Pravenec M et al (2018) Unsupervised, statistically based systems biology approach for unraveling the genetics of complex traits: a demonstration with ethanol metabolism. Alcohol Clin Exp Res 42(7):1177–1191

    Article  CAS  Google Scholar 

  26. Pravenec M, Saba LM, Zidek V, Landa V, Mlejnek P, Silhavy J et al (2018) Systems genetic analysis of brown adipose tissue function. Physiol Genomics 50(1):52–66. https://doi.org/10.1152/physiolgenomics.00091.2017

    Article  CAS  PubMed  Google Scholar 

  27. Morrissey C, Grieve IC, Heinig M, Atanur S, Petretto E, Pravenec M et al (2011) Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat. Physiol Genomics 43(21):1207–1218. https://doi.org/10.1152/physiolgenomics.00210.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abdelmagid N, Bereczky-Veress B, Atanur S, Musilova A, Zidek V, Saba L et al (2016) Von Willebrand factor gene variants associate with herpes simplex encephalitis. PLoS One 11(5):e0155832. https://doi.org/10.1371/journal.pone.0155832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pravenec M, Kozich V, Krijt J, Sokolova J, Zidek V, Landa V et al (2016) Genetic variation in renal expression of folate receptor 1 (Folr1) gene predisposes spontaneously hypertensive rats to metabolic syndrome. Hypertension 67(2):335–341. https://doi.org/10.1161/HYPERTENSIONAHA.115.06158

    Article  CAS  PubMed  Google Scholar 

  30. Kuda O, Brezinova M, Silhavy J, Landa V, Zidek V, Dodia C et al (2018) Nrf2-mediated antioxidant defense and peroxiredoxin 6 are linked to biosynthesis of palmitic acid ester of 9-hydroxystearic acid. Diabetes 67(6):1190–1199. https://doi.org/10.2337/db17-1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoffman PL, Saba LM, Vanderlinden LA, Tabakoff B (2017) Voluntary exposure to a toxin: the genetic influence on ethanol consumption. Mamm Genome 29(1–2):128–140. https://doi.org/10.1007/s00335-017-9726-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mayfield J, Ferguson L, Harris RA (2013) Neuroimmune signaling: a key component of alcohol abuse. Curr Opin Neurobiol 23(4):513–520. https://doi.org/10.1016/j.conb.2013.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bennett BJ, Farber CR, Orozco L, Kang HM, Ghazalpour A, Siemers N et al (2010) A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Res 20(2):281–290. https://doi.org/10.1101/gr.099234.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghazalpour A, Rau CD, Farber CR, Bennett BJ, Orozco LD, van Nas A et al (2012) Hybrid mouse diversity panel: a panel of inbred mouse strains suitable for analysis of complex genetic traits. Mamm Genome 23(9–10):680–692. https://doi.org/10.1007/s00335-012-9411-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lusis AJ, Seldin MM, Allayee H, Bennett BJ, Civelek M, Davis RC et al (2016) The Hybrid Mouse Diversity Panel: a resource for systems genetics analyses of metabolic and cardiovascular traits. J Lipid Res 57(6):925–942. https://doi.org/10.1194/jlr.R066944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Valdar W, Flint J, Mott R (2006) Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. Genetics 172(3):1783–1797. https://doi.org/10.1534/genetics.104.039313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chesler EJ (2014) Out of the bottleneck: the Diversity Outcross and Collaborative Cross mouse populations in behavioral genetics research. Mamm Genome 25(1–2):3–11. https://doi.org/10.1007/s00335-013-9492-9

    Article  PubMed  Google Scholar 

  38. Hermsen R, de Ligt J, Spee W, Blokzijl F, Schafer S, Adami E et al (2015) Genomic landscape of rat strain and substrain variation. BMC Genomics 16:357. https://doi.org/10.1186/s12864-015-1594-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Voigt B, Kuramoto T, Mashimo T, Tsurumi T, Sasaki Y, Hokao R et al (2008) Evaluation of LEXF/FXLE rat recombinant inbred strains for genetic dissection of complex traits. Physiol Genomics 32(3):335–342. https://doi.org/10.1152/physiolgenomics.00158.2007

    Article  CAS  PubMed  Google Scholar 

  40. Flint J, Eskin E (2012) Genome-wide association studies in mice. Nat Rev Genet 13(11):807–817. https://doi.org/10.1038/nrg3335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH/NIAAA (R24 AA013162), NIH/NIDA (P30 DA044223), and the Banbury Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura M. Saba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tabakoff, B., Smith, H., Vanderlinden, L.A., Hoffman, P.L., Saba, L.M. (2019). Networking in Biology: The Hybrid Rat Diversity Panel. In: Hayman, G., Smith, J., Dwinell, M., Shimoyama, M. (eds) Rat Genomics. Methods in Molecular Biology, vol 2018. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9581-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9581-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9580-6

  • Online ISBN: 978-1-4939-9581-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics