Skip to main content

Measurement of Inner Bark and Leaf Osmolality

  • Protocol
  • First Online:
Phloem

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2014))

Abstract

Sugar transport in the phloem is driven by turgor pressure gradients which are created by osmotic gradients resulting from sugars loaded to the phloem at the source tissue and unloaded at the sink tissue. Therefore, osmolality is a key parameter that can be used to evaluate sugar status and get an indication of the driving force for phloem transport. Here we describe how osmotic concentration measurements from inner bark (practically, the phloem) and needles of trees can be measured. This protocol presents the procedure used by Lintunen et al. (Front Plant Sci 7:726, 2016) and Paljakka et al. (Plant Cell Environ 40:2160–2173, 2017), extended by practical advice and discussion of potential errors and caveats. We describe how to implement this procedure for gymnosperm as well as angiosperm trees. This method uses mechanical sap extraction with a centrifuge from inner bark and leaf samples, which have gone through a deep freeze treatment and thawing. The osmotic potential of these samples is then analyzed with a freezing point or vapor pressure osmometer. The aim of these measurements is to study the spatial and temporal dynamics of phloem function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Münch E (1930) Die Stoffbewegungen in der Pflanze. Gustav Fischer, Jena, pp 124–146

    Google Scholar 

  2. Liesche J, Schulz A (2018) Phloem transport in gymnosperms: a question of pressure and resistance. Curr Opin Plant Biol 43:36–42

    Article  Google Scholar 

  3. Nobel PS (2005) Physiochemical and environmental plant physiology, 3rd edn. WH Freeman and Company, New York

    Google Scholar 

  4. Quentin AG, Pinkard EA, Ryan MG, Tissue DT, Baggett LS, Adams HD et al (2015) Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiol 35(11):1146–1165

    CAS  PubMed  Google Scholar 

  5. Rosner S, Baier P, Kikuta SB (2001) Osmotic potential of Norway spruce [Picea abies (L.) Karst.] secondary phloem in relation to anatomy. Trees 15(8):472–482

    Article  Google Scholar 

  6. Sovonick-Dunford S, Lee DR, Zimmermann MH (1981) Direct and indirect measurements of phloem turgor pressure in white ash. Plant Physiol 68(1):121–126

    Article  CAS  Google Scholar 

  7. van Bel AJ (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26(1):125–149

    Article  Google Scholar 

  8. Kaufmann MR, Kramer PJ (1967) Phloem water relations and translocation. Plant Physiol 42(2):191–194

    Article  CAS  Google Scholar 

  9. Devaux M, Ghashghaie J, Bert D, Lambrot C, Gessler A, Bathellier C et al (2009) Carbon stable isotope ratio of phloem sugars in mature pine trees throughout the growing season: comparison of two extraction methods. Rapid Commun Mass Spectrom 23(16):2511–2518

    Article  CAS  Google Scholar 

  10. Huttunen S, Kärenlampi L, Kolari K (1981) Changes in osmotic potential and some related physiological variables in needles of polluted Norway spruce (Picea abies). In: Annales Botanici Fennici. Finnish Botanical Publishing Board, New York, NY, pp 63–71

    Google Scholar 

  11. Irvine J, Perks MP, Magnani F, Grace J (1998) The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance. Tree Physiol 18(6):393–402

    Article  Google Scholar 

  12. Scholander PF, Hammel HT, Hemmingsen EA, Bradstreet ED (1964) Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proc Natl Acad Sci U S A 52(1):119–125

    Article  CAS  Google Scholar 

  13. Jyske T, Hölttä T (2015) Comparison of phloem and xylem hydraulic architecture in Picea abies stems. New Phytol 205(1):102–115

    Article  CAS  Google Scholar 

  14. Lintunen A, Paljakka T, Jyske T, Peltoniemi M, Sterck F, Von Arx G et al (2016) Osmolality and non-structural carbohydrate composition in the secondary phloem of trees across a latitudinal gradient in Europe. Front Plant Sci 7:726. https://doi.org/10.3389/fpls.2016.00726

    Article  PubMed  PubMed Central  Google Scholar 

  15. Paljakka T, Jyske T, Lintunen A, Aaltonen H, Nikinmaa E, Hölttä T (2017) Gradients and dynamics of inner bark and needle osmotic potentials in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst). Plant Cell Environ 40(10):2160–2173. https://doi.org/10.1111/pce.13017

    Article  CAS  PubMed  Google Scholar 

  16. Salmon Y, Torres-Ruiz JM, Poyatos R, Martinez-Vilalta J, Meir P, Cochard H, Mencuccini M (2015) Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine. Plant Cell Environ 38(12):2575–2588

    Article  CAS  Google Scholar 

  17. Takami S, Turner NC, Rawson HM (1981) Leaf expansion of four sunflower (Helianthus annuus L) cultivars in relation to water deficits. I. Patterns during plant development. Plant Cell Environ 4(5):399–407

    Article  Google Scholar 

  18. Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53(2):258–260

    Article  CAS  Google Scholar 

  19. Hölttä T, Vesala T, Sevanto S, Perämäki M, Nikinmaa E (2006) Modeling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis. Trees 20(1):67–78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teemu Paljakka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Paljakka, T., Lintunen, A., Salmon, Y., Hölttä, T. (2019). Measurement of Inner Bark and Leaf Osmolality. In: Liesche, J. (eds) Phloem. Methods in Molecular Biology, vol 2014. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9562-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9562-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9561-5

  • Online ISBN: 978-1-4939-9562-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics