Skip to main content

Multicomponent Yeast Two-Hybrid System: Applications to Study Protein–Protein Interactions in SMC Complexes

  • Protocol
  • First Online:
SMC Complexes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2004))

Abstract

Analysis of protein–protein interactions (PPI) is key for the understanding of most protein assemblies including structural maintenance of chromosomes (SMC) complexes. SMC complexes are composed of SMC proteins, kleisin, and kleisin-interacting subunits. These subunits interact in specific ways to constitute and regulate the closed structure of the complexes. Specifically, kleisin molecules bridge the SMC dimers and the kleisin-interacting subunits modulate stability of the bridge. Here we describe a multicomponent version of a yeast two-hybrid (Y2H) method and its application for analysis of the bridging role of the Nse4 kleisin in the SMC5/6 complex. Using this technique, we also show a stabilizing effect of KITE (kleisin-interacting tandem winged-helix element) proteins on SMC5/6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gligoris T, Löwe J (2016) Structural insights into ring formation of cohesin and related smc complexes. Trends Cell Biol 26:680–693

    Article  CAS  Google Scholar 

  2. Nolivos S, Sherratt D (2014) The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes. FEMS Microbiol Rev 38:380–392

    Article  CAS  Google Scholar 

  3. Bürmann F, Shin HC, Basquin J, Soh YM, Giménez-Oya V, Kim YG, Oh BH, Gruber S (2013) An asymmetric SMC-kleisin bridge in prokaryotic condensin. Nat Struct Mol Biol 20:371–379

    Article  Google Scholar 

  4. Palecek J, Vidot S, Feng M, Doherty AJ, Lehmann AR (2006) The SMC5-6 DNA repair complex: bridging of the SMC5-6 heads by the Kleisin, NSE4, and non-Kleisin subunits. J Biol Chem 281:36952–36959

    Article  CAS  Google Scholar 

  5. Schleiffer A, Kaitna S, Maurer-Stroh S, Glotzer M, Nasmyth K, Eisenhaber F (2003) Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol Cell 11:571–575

    Article  CAS  Google Scholar 

  6. Zawadzka K, Zawadzki P, Baker R, Rajasekar KV, Wagner F, Sherratt DJ, Arciszewska LK (2018) MukB ATPases are regulated independently by the N- and C-terminal domains of MukF kleisin. eLife 7:e31522

    Article  Google Scholar 

  7. Palecek JJ, Gruber S (2015) Kite proteins: a superfamily of SMC/kleisin partners conserved across bacteria, archaea, and eukaryotes. Structure 23:2183–2190

    Article  CAS  Google Scholar 

  8. Wells JN, Gligoris TG, Nasmyth KA, Marsh JA (2017) Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins. Curr Biol 27:R17–R18

    Article  CAS  Google Scholar 

  9. Minnen A, Bürmann F, Wilhelm L, Anchimiuk A, Diebold-Durand ML, Gruber S (2016) Control of Smc coiled coil architecture by the ATPase heads facilitates targeting to chromosomal ParB/parS and release onto flanking DNA. Cell Rep 14:2003–2016

    Article  CAS  Google Scholar 

  10. Hazbun TR, Malmstrom L, Anderson S, Graczyk BJ, Fox B, Riffle M, Sundin BA, Aranda JD, McDonald WH, Chiu CH, Snydsman BE, Bradley P, Muller EG, Fields S, Baker D, Yates JR III, Davis TN (2003) Assigning function to yeast proteins by integration of technologies. Mol Cell 12:1353–1365

    Article  CAS  Google Scholar 

  11. Duan X, Yang Y, Chen YH, Arenz J, Rangi GK, Zhao X, Ye H (2009) Architecture of the Smc5/6 complex of Saccharomyces cerevisiae reveals a unique interaction between the Nse5-6 subcomplex and the hinge regions of Smc5 and Smc6. J Biol Chem 284:8507–8515

    Article  CAS  Google Scholar 

  12. Guerineau M, Kriz Z, Kozakova L, Bednarova K, Janos P, Palecek J (2012) Analysis of the Nse3/MAGE-binding domain of the Nse4/EID family proteins. PLoS One 7:e35813

    Article  CAS  Google Scholar 

  13. Hudson JJR, Bednarova K, Kozakova L, Liao C, Guerineau M, Colnaghi R, Vidot S, Marek J, Bathula SR, Lehmann AR, Palecek J (2011) Interactions between the Nse3 and Nse4 components of the SMC5-6 complex identify evolutionarily conserved interactions between MAGE and EID families. PLoS One 6:e17270

    Article  CAS  Google Scholar 

  14. Sergeant J, Taylor E, Palecek J, Fousteri M, Andrews E, Sweeney S, Shinagawa H, Watts F, Lehmann A (2005) Composition and architecture of the Schizosaccharomyces pombe Rad18 (Smc5-6) complex. Mol Cell Biol 25:172–184

    Article  CAS  Google Scholar 

  15. van der Crabben SN, Hennus MP, McGregor GA, Ritter DI, Nagamani SCS, Wells OS, Harakalova M, Chinn IK, Alt A, Vondrova L, Hochstenbach R, van Montfrans JM, Terheggen-Lagro SW, van Lieshout S, van Roosmalen MJ, Renkens I, Duran K, Nijman IJ, Kloosterman WP, Hennekam E, Orange JS, van Hasselt PM, Wheeler DA, Palecek JJ, Lehmann AR, Oliver AW, Pearl LH, Plon SE, Murray JM, van Haaften G (2016) Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease. J Clin Investig 126:2881–2892

    Article  Google Scholar 

  16. Kozakova L, Vondrova L, Stejskal K, Charalabous P, Kolesar P, Lehmann AR, Uldrijan S, Sanderson CM, Zdrahal Z, Palecek JJ (2015) The melanoma-associated antigen 1 (MAGEA1) protein stimulates the E3 ubiquitin-ligase activity of TRIM31 within a TRIM31-MAGEA1-NSE4 complex. Cell Cycle 14:920–930

    Article  CAS  Google Scholar 

  17. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  CAS  Google Scholar 

  18. Stynen B, Tournu H, Tavernier J, Van Dijck P (2012) Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 76:331–382

    Article  CAS  Google Scholar 

  19. Zabrady K, Adamus M, Vondrova L, Liao C, Skoupilova H, Novakova M, Jurcisinova L, Alt A, Oliver AW, Lehmann AR, Palecek JJ (2016) Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA. Nucleic Acids Res 44:1064–1079

    Article  CAS  Google Scholar 

  20. Vondrova L, Nociar M, Adamus M, and Palecek, JJ (2018) Kite proteins regulate Nse4 bridge in SMC5/6 complex. Manuscript in preparation

    Google Scholar 

  21. MacDonald PN (2001) Two-hybrid systems. Humana Press, Totowa, NJ

    Book  Google Scholar 

  22. Mumberg D, Müller R, Funk M (1994) Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res 22:5767–5768

    Article  CAS  Google Scholar 

  23. James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Klein P, Dietz KJ (2010) Identification of DNA-binding proteins and protein-protein interactions by yeast one-hybrid and yeast two-hybrid screen. Methods Mol Biol 639:171–192

    Article  CAS  Google Scholar 

  25. Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Czech Science Foundation grant GA18-02067S and the Ministry of Education, Youth and Sports of the Czech Republic project CEITEC 2020 (LQ1601) are acknowledged for their financial support. This chapter reflects only the author’s view, and the Research Executive Agency is not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Josef Paleček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Paleček, J.J., Vondrová, L., Zábrady, K., Otočka, J. (2019). Multicomponent Yeast Two-Hybrid System: Applications to Study Protein–Protein Interactions in SMC Complexes. In: Badrinarayanan, A. (eds) SMC Complexes. Methods in Molecular Biology, vol 2004. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9520-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9520-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9519-6

  • Online ISBN: 978-1-4939-9520-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics