Skip to main content

Conversion Tract Analysis of Homology-Directed Genome Editing Using Oligonucleotide Donors

  • Protocol
  • First Online:
DNA Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1999))

Abstract

Homology-directed genome editing is the intentional alteration of an endogenous genetic locus using information from an exogenous homology donor. A conversion tract is defined as the amount of genetic information that is converted from the homology donor to a given strand of the targeted chromosomal locus. Because of this, conversion tract analysis retrospectively not only elucidates the mechanism of homology-directed genome editing but also provides valuable insights on the conversion efficiency of every nucleotide in the homology donor. Here we describe a blue fluorescent protein-to-green fluorescent protein conversion system that can be conveniently used to measure the efficiency and analyze the lengths of conversion tracts of homology-directed genome editing using oligonucleotide donors in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hendrickson EA (2008) Gene targeting in human somatic cells. In: Conn PM (ed) Source book of models for biomedical research. Humana Press, Inc., Totowa, NJ, pp 509–525

    Chapter  Google Scholar 

  2. Chang HHY, Pannunzio NR, Adachi N, Lieber MR (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18(8):495–506. https://doi.org/10.1038/nrm.2017.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jasin M, Rothstein R (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5(11):a012740. https://doi.org/10.1101/cshperspect.a012740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10(10):957–963. https://doi.org/10.1038/nmeth.2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096

    Article  CAS  PubMed  Google Scholar 

  7. Pennisi E (2013) The CRISPR craze. Science 341(6148):833–836. https://doi.org/10.1126/science.341.6148.833

    Article  CAS  PubMed  Google Scholar 

  8. Baker M (2014) Gene editing at CRISPR speed. Nat Biotechnol 32(4):309–312. https://doi.org/10.1038/nbt.2863

    Article  CAS  PubMed  Google Scholar 

  9. Ledford H (2015) CRISPR, the disruptor. Nature 522(7554):20–24. https://doi.org/10.1038/522020a

    Article  CAS  PubMed  Google Scholar 

  10. Shapiro RS, Chavez A, Collins JJ (2018) CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms. Nat Rev Microbiol 16:333–339. https://doi.org/10.1038/s41579-018-0002-7

    Article  CAS  PubMed  Google Scholar 

  11. Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 8:1932. https://doi.org/10.3389/fpls.2017.01932

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lamas-Toranzo I, Guerrero-Sanchez J, Miralles-Bover H, Alegre-Cid G, Pericuesta E, Bermejo-Alvarez P (2017) CRISPR is knocking on barn door. Reprod Domest Anim 52(Suppl 4):39–47. https://doi.org/10.1111/rda.13047

    Article  CAS  PubMed  Google Scholar 

  13. Pankowicz FP, Jarrett KE, Lagor WR, Bissig KD (2017) CRISPR/Cas9: at the cutting edge of hepatology. Gut 66(7):1329–1340. https://doi.org/10.1136/gutjnl-2016-313565

    Article  CAS  PubMed  Google Scholar 

  14. Smith AJ, Carter SP, Kennedy BN (2017) Genome editing: the breakthrough technology for inherited retinal disease? Expert Opin Biol Ther 17(10):1245–1254. https://doi.org/10.1080/14712598.2017.1347629

    Article  CAS  PubMed  Google Scholar 

  15. Langston LD, Symington LS (2004) Gene targeting in yeast is initiated by two independent strand invasions. Proc Natl Acad Sci U S A 101(43):15392–15397. https://doi.org/10.1073/pnas.0403748101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kan Y, Ruis B, Lin S, Hendrickson EA (2014) The mechanism of gene targeting in human somatic cells. PLoS Genet 10(4):e1004251. https://doi.org/10.1371/journal.pgen.1004251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kan Y, Ruis B, Takasugi T, Hendrickson EA (2017) Mechanisms of precise genome editing using oligonucleotide donors. Genome Res 27(7):1099–1111. https://doi.org/10.1101/gr.214775.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee GS, Neiditch MB, Salus SS, Roth DB (2004) RAG proteins shepherd double-strand breaks to a specific pathway, suppressing error-prone repair, but RAG nicking initiates homologous recombination. Cell 117(2):171–184

    Article  CAS  PubMed  Google Scholar 

  19. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389. https://doi.org/10.1016/j.cell.2013.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vriend LE, Krawczyk PM (2017) Nick-initiated homologous recombination: protecting the genome, one strand at a time. DNA Repair (Amst) 50:1–13. https://doi.org/10.1016/j.dnarep.2016.12.005

    Article  CAS  Google Scholar 

  21. Davis L, Maizels N (2014) Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc Natl Acad Sci U S A 111(10):E924–E932. https://doi.org/10.1073/pnas.1400236111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Davis L, Maizels N (2011) DNA nicks promote efficient and safe targeted gene correction. PLoS One 6(9):e23981. https://doi.org/10.1371/journal.pone.0023981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Quadros RM, Miura H, Harms DW, Akatsuka H, Sato T, Aida T, Redder R, Richardson GP, Inagaki Y, Sakai D, Buckley SM, Seshacharyulu P, Batra SK, Behlke MA, Zeiner SA, Jacobi AM, Izu Y, Thoreson WB, Urness LD, Mansour SL, Ohtsuka M, Gurumurthy CB (2017) Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol 18(1):92. https://doi.org/10.1186/s13059-017-1220-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6(2):178–182

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Hendrickson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kan, Y., Hendrickson, E.A. (2019). Conversion Tract Analysis of Homology-Directed Genome Editing Using Oligonucleotide Donors. In: Balakrishnan, L., Stewart, J. (eds) DNA Repair. Methods in Molecular Biology, vol 1999. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9500-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9500-4_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9499-1

  • Online ISBN: 978-1-4939-9500-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics