Skip to main content

A Natural Mouse Model for Neisseria Persistent Colonization

  • Protocol
  • First Online:
Neisseria gonorrhoeae

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1997))

Abstract

We have developed a natural mouse model to study persistent colonization by commensal Neisseria. The system couples the ordinary lab mouse with Neisseria musculi (Nmus), a commensal in the oral cavity and gut of the wild mouse, Mus musculus. The pairing of Nmus with its natural reservoir circumvents host restriction barriers that have impeded previous studies of Neisseria in vivo behavior. The model allows, for the first time, for the dissection of host and neisserial determinants of asymptomatic colonization. Inoculation procedures are noninvasive and susceptibility to Nmus colonization varies with host genetic background. In colonized mice, bacterial burdens are detectable up to 1-year post inoculation, making it an ideal model for the study of persistence. As Nmus encodes several Neisseria gonorrhoeae (and Neisseria meningitidis) host interaction factors, the system can be used to query the in vivo functions of these commonly held genes and factors. Nmus also encodes many pathogenic Neisseria vaccine targets including a polysaccharide capsule, making the model potentially useful for vaccine development. The ease of genetic manipulation of Nmus enhances the feasibility of such studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sommer F, Backhed F (2013) The gut microbiota-masters of host development and physiology. Nat Rev Microbiol 11(4):227–238. https://doi.org/10.1038/nrmicro2974

    Article  CAS  Google Scholar 

  2. Campisi L, Barbet G, Ding Y et al (2016) Apoptosis in response to microbial infection induces autoreactive TH17 cells. Nat Immunol 17(9):1084–1092. https://doi.org/10.1038/ni.3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kugelberg E (2016) Autoimmunity: infection stimulates self-antigen presentation. Nat Rev Immunol 16(9):534–535. https://doi.org/10.1038/nri.2016.91

    Article  PubMed  Google Scholar 

  4. Liu X, Zeng B, Zhang J et al (2016) Role of the gut microbiome in modulating arthritis progression in mice. Sci Rep 6:30594. https://doi.org/10.1038/srep30594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Linehan JL, Harrison OJ, Han SJ et al (2018) Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell 172(4):784–796 e718. https://doi.org/10.1016/j.cell.2017.12.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deriu E, Liu JZ, Pezeshki M et al (2013) Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe 14(1):26–37. https://doi.org/10.1016/j.chom.2013.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Evans CM, Pratt CB, Matheson M et al (2011) Nasopharyngeal colonization by Neisseria lactamica and induction of protective immunity against Neisseria meningitidis. Clin Infect Dis 52(1):70–77. https://doi.org/10.1093/cid/ciq065. ciq065 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Bennett JS, Bratcher HB, Brehony C et al (2014) The genus Neisseria. The prokaryotes – alphaproteobacteria and betaproteobacteria, 4th edn. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  9. Liu G, Tang CM, Exley RM (2015) Non-pathogenic Neisseria: members of an abundant, multi-habitat, diverse genus. Microbiology 161(7):1297–1312. https://doi.org/10.1099/mic.0.000086

    Article  CAS  PubMed  Google Scholar 

  10. Janda W, Bohnhoff M, Morello J et al (1980) Prevalence and site-pathogen studies of Neisseria meningitidis and N. gonorrhoeae in homosexual men. JAMA 244:2060–2064

    Article  CAS  Google Scholar 

  11. Caugant DA, Maiden MC (2009) Meningococcal carriage and disease—population biology and evolution. Vaccine 27(Suppl 2):B64–B70. https://doi.org/10.1016/j.vaccine.2009.04.061. S0264-410X(09)00615-X [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ma M, Powell DA, Weyand NJ et al (2018) A mouse model for Neisseria colonization. Infect Immun. https://doi.org/10.1128/IAI.00839-17

  13. Weyand NJ, Ma M, Phifer-Rixey M et al (2016) Isolation and characterization of Neisseria musculi sp. nov., from the wild house mouse. Int J Syst Evol Microbiol 66(9):3585–3593. https://doi.org/10.1099/ijsem.0.001237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rice PA, Shafer WM, Ram S et al (2017) Neisseria gonorrhoeae: drug resistance, mouse models, and vaccine development. Annu Rev Microbiol 71:665–686. https://doi.org/10.1146/annurev-micro-090816-093530

    Article  CAS  PubMed  Google Scholar 

  15. Weyand NJ (2017) Neisseria models of infection and persistence in the upper respiratory tract. Pathog Dis 75(3). https://doi.org/10.1093/femspd/ftx031

  16. Johswich KO, McCaw SE, Islam E et al (2013) In vivo adaptation and persistence of Neisseria meningitidis within the nasopharyngeal mucosa. PLoS Pathog 9(7):e1003509. https://doi.org/10.1371/journal.ppat.1003509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Join-Lambert O, Lecuyer H, Miller F et al (2013) Meningococcal interaction to microvasculature triggers the tissular lesions of purpura fulminans. J Infect Dis 208(10):1590–1597. https://doi.org/10.1093/infdis/jit301

    Article  PubMed  Google Scholar 

  18. Merz AJ, So M (1997) Attachment of piliated, Opa− and Opc− gonococci and meningococci to epithelial cells elicits cortical actin rearrangements and clustering of tyrosine-phosphorylated proteins. Infect Immun 65(10):4341–4349

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Join-lambert O, Morand PC, Carbonelle E et al (2010) Mechanisms of meningeal invasion by a bacterial extracellular pathogen, the example of Neisseria meningitidis. Prog Neurobiol 91(2):130–139. https://doi.org/10.1016/j.pneurobio.2009.12.004

    Article  CAS  PubMed  Google Scholar 

  20. Vedros NA, Hoke C, Chun P (1983) Neisseria macacae sp. nov., a new Neisseria species isolated from the oropharynges of rhesus monkeys (Macaca mulatta). Int J Syst Bacteriol 33(3):515–520

    Article  Google Scholar 

  21. Weyand NJ, Wertheimer AM, Hobbs TR et al (2013) Neisseria infection of rhesus macaques as a model to study colonization, transmission, persistence, and horizontal gene transfer. Proc Natl Acad Sci U S A 110(8):3059–3064. https://doi.org/10.1073/pnas.1217420110. 1217420110 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bennett JS, Jolley KA, Earle SG et al (2012) A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria. Microbiology 158(Pt 6):1570–1580. https://doi.org/10.1099/mic.0.056077-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dillard JP (2011) Genetic manipulation of Neisseria gonorrhoeae. Curr Protoc Microbiol. Chapter 4:Unit4A.2. https://doi.org/10.1002/9780471729259.mc04a02s00

  24. Aylor DL, Valdar W, Foulds-Mathes W et al (2011) Genetic analysis of complex traits in the emerging Collaborative Cross. Genome Res 21(8):1213–1222. https://doi.org/10.1101/gr.111310.110. gr.111310.110 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jolley KA, Maiden MC (2010) BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11:595. https://doi.org/10.1186/1471-2105-11-595

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by NIH 1R56A124665-01 awarded to M. So.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalene So .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rhodes, K., Ma, M., So, M. (2019). A Natural Mouse Model for Neisseria Persistent Colonization. In: Christodoulides, M. (eds) Neisseria gonorrhoeae. Methods in Molecular Biology, vol 1997. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9496-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9496-0_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9495-3

  • Online ISBN: 978-1-4939-9496-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics