Skip to main content

Analysis of Host Responses to Neisseria gonorrhoeae Using a Human Three-Dimensional Endometrial Epithelial Cell Model

  • Protocol
  • First Online:
Neisseria gonorrhoeae

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1997))

Abstract

Neisseria gonorrhoeae infections have been associated with complications including chronic endometritis and pelvic inflammatory disease. Robust in vitro models of the female reproductive tract are urgently needed to better understand the biological mechanisms leading to these pathophysiological changes. Our human three-dimensional (3D) endometrial epithelial cell (EEC) model, which is generated using the HEC-1A cell line and rotating wall vessel (RWV) bioreactor technology, replicates several hallmarks of endometrial tissue in vivo. Studying the interactions of N. gonorrhoeae with the host using this newly characterized human 3D EEC model allows for the investigation of unique mechanisms of gonococcal pathogenesis in the upper female reproductive tract. In this chapter, we describe methodologies that can be used to investigate the interactions of N. gonorrhoeae with the human 3D endometrial epithelium. Protocols for generating the human 3D EEC model using the RWV technology and assessing the host response (including morphological/ultrastructural changes to the epithelial cells; cytokine/chemokine secretion or gene expression changes) following infection with N. gonorrhoeae are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Illouz S, Dales JP, Sferlazzo K et al (2003) Effects of progestins of human proliferative endometrium: an in vitro model of potential clinical relevance. Int J Mol Med 12(4):517–523

    CAS  PubMed  Google Scholar 

  2. Sharma M, Shubert DE, Sharma M et al (2003) Antioxidant inhibits tamoxifen-DNA adducts in endometrial explant culture. Biochem Biophys Res Commun 307(1):157–164

    Article  CAS  Google Scholar 

  3. Sharma M, Shubert DE, Sharma M et al (2003) Biotransformation of tamoxifen in a human endometrial explant culture model. Chem Biol Interact 146(3):237–249

    Article  CAS  Google Scholar 

  4. Blauer M, Heinonen PK, Martikainen PM et al (2005) A novel organotypic culture model for normal human endometrium: regulation of epithelial cell proliferation by estradiol and medroxyprogesterone acetate. Hum Reprod 20(4):864–871. https://doi.org/10.1093/humrep/deh722

    Article  CAS  PubMed  Google Scholar 

  5. Laniewski P, Gomez A, Hire G et al (2017) Human three-dimensional endometrial epithelial cell model to study host interactions with vaginal bacteria and Neisseria gonorrhoeae. Infect Immun 85(3). https://doi.org/10.1128/IAI.01049-16

  6. Barrila J, Radtke AL, Crabbe A et al (2010) Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat Rev Microbiol 8(11):791–801. https://doi.org/10.1038/nrmicro2423

    Article  CAS  PubMed  Google Scholar 

  7. Radtke AL, Herbst-Kralovetz MM (2012) Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models. J Vis Exp (62):e3868. https://doi.org/10.3791/3868

  8. Herbst-Kralovetz MM, Radtke AL, Lay MK et al (2013) Lack of norovirus replication and histo-blood group antigen expression in 3-dimensional intestinal epithelial cells. Emerg Infect Dis 19(3):431–438. https://doi.org/10.3201/eid1903.121029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. LaMarca HL, Ott CM, Honer Zu Bentrup K et al (2005) Three-dimensional growth of extravillous cytotrophoblasts promotes differentiation and invasion. Placenta 26(10):709–720. https://doi.org/10.1016/j.placenta.2004.11.003

    Article  CAS  PubMed  Google Scholar 

  10. Winkle SM, Throop AL, Herbst-Kralovetz MM (2016) IL-36gamma augments host defense and immune responses in human female reproductive tract epithelial cells. Front Microbiol 7:955. https://doi.org/10.3389/fmicb.2016.00955

    Article  PubMed  PubMed Central  Google Scholar 

  11. Radtke AL, Quayle AJ, Herbst-Kralovetz MM (2012) Microbial products alter the expression of membrane-associated mucin and antimicrobial peptides in a three-dimensional human endocervical epithelial cell model. Biol Reprod 87(6):132. https://doi.org/10.1095/biolreprod.112.103366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McGowin CL, Radtke AL, Abraham K et al (2013) Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis 207(12):1857–1868. https://doi.org/10.1093/infdis/jit101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hjelm BE, Berta AN, Nickerson CA et al (2010) Development and characterization of a three-dimensional organotypic human vaginal epithelial cell model. Biol Reprod 82(3):617–627. https://doi.org/10.1095/biolreprod.109.080408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Herbst-Kralovetz MM, Pyles RB, Ratner AJ et al (2016) New systems for studying intercellular interactions in bacterial vaginosis. J Infect Dis 214(Suppl 1):S6–S13. https://doi.org/10.1093/infdis/jiw130

    Article  PubMed  PubMed Central  Google Scholar 

  15. Doerflinger SY, Throop AL, Herbst-Kralovetz MM (2014) Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis 209(12):1989–1999. https://doi.org/10.1093/infdis/jiu004

    Article  CAS  PubMed  Google Scholar 

  16. Kuramoto H, Tamura S, Notake Y (1972) Establishment of a cell line of human endometrial adenocarcinoma in vitro. Am J Obstet Gynecol 114(8):1012–1019

    Article  CAS  Google Scholar 

  17. Reighard SD, Sweet RL, Vicetti Miguel C et al (2011) Endometrial leukocyte subpopulations associated with Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis genital tract infection. Am J Obstet Gynecol 205(4):324.e1–324.e7. https://doi.org/10.1016/j.ajog.2011.05.031

    Article  Google Scholar 

  18. Wiesenfeld HC, Hillier SL, Krohn MA et al (2002) Lower genital tract infection and endometritis: insight into subclinical pelvic inflammatory disease. Obstet Gynecol 100(3):456–463

    PubMed  Google Scholar 

  19. Reekie J, Donovan B, Guy R et al (2018) Risk of pelvic inflammatory disease in relation to chlamydia and gonorrhea testing, repeat testing, and positivity: a population-based cohort study. Clin Infect Dis 66(3):437–443. https://doi.org/10.1093/cid/cix769

    Article  PubMed  Google Scholar 

  20. Griffiss JM, Lammel CJ, Wang J et al (1999) Neisseria gonorrhoeae coordinately uses Pili and Opa to activate HEC-1-B cell microvilli, which causes engulfment of the gonococci. Infect Immun 67(7):3469–3480

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Higashi DL, Lee SW, Snyder A et al (2007) Dynamics of Neisseria gonorrhoeae attachment: microcolony development, cortical plaque formation, and cytoprotection. Infect Immun 75(10):4743–4753. https://doi.org/10.1128/IAI.00687-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Merz AJ, So M, Sheetz MP (2000) Pilus retraction powers bacterial twitching motility. Nature 407(6800):98–102. https://doi.org/10.1038/35024105

    Article  CAS  PubMed  Google Scholar 

  23. Wolfgang M, Lauer P, Park HS et al (1998) PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol Microbiol 29(1):321–330

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Magdalene So (Department of Immunobiology and BIO5 Institute, University of Arizona, Tucson, AZ) for providing N. gonorrhoeae strains, and Adriana Tonachio, and David Lowry (Electron Microscope Laboratory, Arizona State University, Tempe, AZ) for technical support with electron microscope analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa M. Herbst-Kralovetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Łaniewski, P., Herbst-Kralovetz, M.M. (2019). Analysis of Host Responses to Neisseria gonorrhoeae Using a Human Three-Dimensional Endometrial Epithelial Cell Model. In: Christodoulides, M. (eds) Neisseria gonorrhoeae. Methods in Molecular Biology, vol 1997. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9496-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9496-0_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9495-3

  • Online ISBN: 978-1-4939-9496-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics