Skip to main content

Rhodococcus and Yarrowia-Based Lipid Production Using Lignin-Containing Industrial Residues

  • Protocol
  • First Online:
Microbial Lipid Production

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1995))

Abstract

Improvement in biorefining technologies coupled with development of novel fermentation strategies and analysis will be paramount in establishing supplementary and sustainable biofuel pathways. Oleaginous microorganisms that are capable of accumulating triacylglycerides (TAGs) and fatty acid methyl esters (FAMEs), such as Rhodococcus and Yarrowia species, can be used to produce second-generation biofuels from non-food competing carbon sources. These “microbiorefineries” provide a pathway to upgrade agricultural and industrial waste streams to fungible fuels or precursors to chemicals and materials. Here we provide a general overview on cultivating Rhodococcus and Yarrowia on agro-waste/industrial biomass pretreatment waste streams to produce single-cell oils/lipids and preparing samples for FAME detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846

    Article  CAS  Google Scholar 

  2. Deeba FV, Pruthi V, Negi YS (2016) Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production. Bioresour Technol 213:96–102

    Article  CAS  Google Scholar 

  3. Lamers D, van Biezen N, Martens D, Peters L, Van de Zilver E, Jacobs-van Druemel N, Wijffels RH, Lokman C (2016) Selection of oleaginous yeasts for fatty acid production. BMC Biotechnol 16(1):45

    Article  Google Scholar 

  4. Abghari A, Chen S (2014) Yarrowia lipolytica as an oleaginous cell factory platform for production of fatty acid-based biofuel and bioproducts. Front Energy Res 2(21). https://doi.org/10.3389/fenrg.2014.00021

  5. Ledesma-Amaro R, Nicaud J-M (2016) Metabolic engineering for expanding the substrate range of Yarrowia lipolytica. Trends Biotechnol 34(10):798–809

    Article  CAS  Google Scholar 

  6. Beopoulos A, Cescut J, Haddouche R, Uribelarrea J-J, Molina-Jouve C, Nicaud J-M (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48(6):375–387

    Article  CAS  Google Scholar 

  7. Beopoulos A, Nicaud JM, Gailardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90(4):1193–1206

    Article  CAS  Google Scholar 

  8. Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29(2):53–61

    Article  CAS  Google Scholar 

  9. Kosa M, Ragauskas AJ (2012) Bioconversion of lignin model compounds with oleaginous rhodococci. Appl Microbiol Biotechnol 93(2):891–900

    Article  CAS  Google Scholar 

  10. Kosa M, Ragauskas AJ (2013) Lignin to lipid bioconversion by oleaginous rhodococci. Green Chem 15(8):2070–2074

    Article  CAS  Google Scholar 

  11. Wei Z, Zeng G, Huang F, Kosa M, Huang D, Ragauskas AJ (2015) Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chem 17(5):2784–2789

    Article  CAS  Google Scholar 

  12. Wei Z, Zeng G, Huang F, Kosa M, Sun Q, Meng X, Huang D, Ragauskas AJ (2015) Microbial lipid production by oleaginous rhodococci cultured in lignocellulosic autohydrolysates. Appl Microbiol Biotechnol 99(17):7369–7377

    Article  CAS  Google Scholar 

  13. Wei Z, Zeng G, Kosa M, Huang D, Ragauskas AJ (2015) Pyrolysis oil-based lipid production as biodiesel feedstock by Rhodococcus opacus. Appl Biochem Biotechnol 175(2):1234–1246

    Article  CAS  Google Scholar 

  14. Le RK, Wells T, Das P, Meng X, Stoklosa RJ, Bhalla A, Hodge DB, Yuan JS, Tagauskas AJ (2017) Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via rhodococci. RSC Adv 7(7):4108–4115

    Article  CAS  Google Scholar 

  15. Alvarez H, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60(4):367–376

    Article  CAS  Google Scholar 

  16. Alvarez HM, Kalscheuer R, Steinbüchel A (1997) Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Eur J Lip Sci Technol 99(7):239–246

    CAS  Google Scholar 

  17. Gomez JA, Höffner K, Barton PI (2016) From sugars to biodiesel using microalgae and yeast. Green Chem 18(2):461–475

    Article  CAS  Google Scholar 

  18. Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34(1):1–5

    Article  Google Scholar 

  19. Pimentel D, Patzek PW (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res 14(1):65–76

    Article  CAS  Google Scholar 

  20. Beckham GT, Johnson CW, Karp EM, Salvachua D, Vardon DR (2016) Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol 42:40–53

    Article  CAS  Google Scholar 

  21. Alvarez HM, Kalscheuer R, Steinbuchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54:218–223

    Article  CAS  Google Scholar 

  22. Wells T, Ragauskas AJ (2012) Biotechnological opportunities with the β-ketoadipate pathway. Trends Biotechnol 30:627–637

    Article  CAS  Google Scholar 

  23. Schlegel H, Kaltwasser H, Gottschalk G (1961) A submersion method for culture of hydrogen-oxidizing bacteria: growth physiological studies. Arch Microbiol 38(3):209–222

    CAS  Google Scholar 

  24. Yang X, Jin G, Gong Z, Shen H, Song Y, Bai F, Zhao ZK (2014) Simultaneous utilization of glucose and mannose from spent yeast cell mass for lipid production by Lipomyces starkeyi. Bioresour Technol 158:383–387

    Article  CAS  Google Scholar 

  25. Nambou K, Zhao C, Wei L, Chen J, Imanaka T, Hua Q (2014) Designing of a cheap to run fermentation platform for an enhanced production of single cell oil from Yarrowia lipolytica DSM3286 as a potential feedstock for biodiesel. Bioresour Technol 173:324–333

    Article  CAS  Google Scholar 

  26. Daggett P-M, Simione FP (1987) Method of culturing freeze-dried microorganisms. US Patent US4672037A

    Google Scholar 

  27. Berny J-F, Hennebert G (1991) Viability and stability of yeast cells and filamentous fungus spores during freeze-drying: effects of protectants and cooling rates. Mycologia 83:805–815

    Article  CAS  Google Scholar 

  28. Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Nonconventional yeasts in biotechnology. Springer, New York, pp 313–388

    Chapter  Google Scholar 

  29. Gajdoš P, Nicaud JM, Rossignol T, Čertík M (2015) Single cell oil production on molasses by Yarrowia lipolytica strains overexpressing dga2 in multicopy. Appl Microbiol Biotechnol 99(19):8065–8074

    Article  Google Scholar 

  30. Blagodatskaj V, Kockova-Kratochvilova K (1973) The heterogeneity of the species Candida lipolytica Candida pseudolipolytica new species and Candida lipolytica var thermotolerans new variety. Biologia (Bratislava) 28(9):709–716

    Google Scholar 

  31. Barnett JA, Payne RW, Yarrow D (1983) Yeasts: characteristics and identification. Cambridge University Press, Cambridge

    Google Scholar 

  32. Qiao K, Wasylenko TM, Zhou K, Xu P, Stephanopoulos G (2017) Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat Biotechnol 35(2):173–177

    Article  CAS  Google Scholar 

  33. Wei Y, Siewers V, Nielsen J (2017) Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions. Appl Microbiol Biotechnol 101(9):3577–3585

    Article  CAS  Google Scholar 

  34. Xu P, Qiao K, Ahn WS, Stephanopoulos G (2016) Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad Sci U S A 113(39):10848–10853

    Article  CAS  Google Scholar 

  35. Zhang H, Wu C, Wu Q, Dai J, Song Y (2016) Metabolic flux analysis of lipid biosynthesis in the yeast Yarrowia lipolytica using 13C-labeled glucose and gas chromatography-mass spectrometry. PLoS One 11(7):E0159187

    Article  Google Scholar 

  36. Friedlander J, Tsakraklides V, Kamineni A, Greenhagen EH, Consiglio AL, MacEwen K, Crabtree DV, Afshar J, Nugent RL, Hamilton MA, Shaw AJ, Suth CR, Stephanopoulos G, Brevnova EE (2016) Engineering of a high lipid producing Yarrowia lipolytica strain. Biotechnol Biofuels 9(1):77

    Article  Google Scholar 

  37. He Y, Li X, Ben H, Xue X, Yang B (2017) Lipid production from dilute alkali corn stover lignin by Rhodococcus strains. ACS Sustain Chem Eng 5(3):2302–2311

    Article  CAS  Google Scholar 

  38. Korntner P, Sumerskii I, Bacher M, Rosenau T, Potthast A (2015) Characterization of technical lignins by NMR spectroscopy: optimization of functional group analysis by 31P NMR spectroscopy. Holzforschung:807. https://doi.org/10.1515/hf-2014-0281

  39. Ben H, Ragauskas AJ (2011) NMR characterization of pyrolysis oils from Kraft lignin. Energy Fuel 25(5):2322–2332

    Article  CAS  Google Scholar 

  40. Pu Y, Cao S, Ragauska AJ (2011) Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy Environ Sci 4(9):3154–3166

    Article  CAS  Google Scholar 

  41. Sannigrahi P, Ragauskas AJ (2011) Characterization of fermentation residues from the production of bio-ethanol from lignocellulosic feedstocks. J Biobased Mater Bioenergy 5(4):514–519

    Article  CAS  Google Scholar 

  42. Kubo S, Kadla JF (2005) Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromolecules 6(5):2815–2821

    Article  CAS  Google Scholar 

  43. Meng X, Sun Q, Kosa M, Huang F, Pu Y, Ragauskas AJ (2016) Physicochemical structural changes of poplar and switchgrass during biomass pretreatment and enzymatic hydrolysis. ACS Sustain Chem Eng 4(9):4563–4572

    Article  CAS  Google Scholar 

  44. Tolbert A, Akinosho H, Khunsupat R, Naskar AK, Ragauskas AJ (2014) Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels Bioprod Biorefin 8(6):836–856

    Article  CAS  Google Scholar 

  45. Le RK, Das P, Mahan KM, Anderson SA, Wells T Jr, Yuan JS, Ragauskas AJ (2017) Utilization of simultaneous saccharification and fermentation residues as feedstock for lipid accumulation in Rhodococcus opacus. AMB Express 7(1):185

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by US Department of Energy (award #DE—EE0006112), and we would like to acknowledge our collaborator Joshua S. Yuan at Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. Ragauskas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Le, R.K., Mahan, K.M., Ragauskas, A.J. (2019). Rhodococcus and Yarrowia-Based Lipid Production Using Lignin-Containing Industrial Residues. In: Balan, V. (eds) Microbial Lipid Production. Methods in Molecular Biology, vol 1995. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9484-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9484-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9483-0

  • Online ISBN: 978-1-4939-9484-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics