Skip to main content

Human Reconstructed Skin in a Mouse Model

  • Protocol
  • First Online:
Skin Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1993))

Abstract

Currently, no ideal in vivo skin model, to exactly mimic the native human skin, has been utilized for laboratory and clinical application. Here, we describe a method to in vivo reconstitute a human skin model, so-called hRSK, by using culture-expanded skin cells. We grafted a mixture of dissociated human epidermal and dermal cells onto an excision wound on the back of immunodeficient mouse to generate the hRSK, and the hRSK, containing epidermis, dermis, and subcutis and also appendages such as hair follicles, histologically mirrors in situ human skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reuter C, Walles H, Groeber F (2017) Preparation of a three-dimensional full thickness skin equivalent. Methods Mol Biol 1612:191–198

    Article  CAS  Google Scholar 

  2. Desmet E, Ramadhas A, Lambert J, Van Gele M (2017) In vitro psoriasis models with focus on reconstructed skin models as promising tools in psoriasis research. Exp Biol Med (Maywood) 242(11):1158–1169

    Article  CAS  Google Scholar 

  3. Vinardell MP, Llanas H, Marics L, Mitjans M (2017) In vitro comparative skin irritation induced by nano and non-nano zinc oxide. Nanomaterials (Basel) 7(3):56

    Article  Google Scholar 

  4. Wills JW, Hondow N, Thomas AD, Chapman KE, Fish D, Maffeis TG, Doak SH (2016) Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm). Part Fibre Toxicol 13(1):50

    Article  Google Scholar 

  5. Naughton GK, Mansbridge JN (1999) Human-based tissue-engineered implants for plastic and reconstructive surgery. Clin Plast Surg 26(4):579–586

    Article  CAS  Google Scholar 

  6. Parenteau N (1999) Skin: the first tissue-engineered products. Sci Am 280(4):83–84

    Article  CAS  Google Scholar 

  7. Michel M, L’Heureux N, Pouliot R, Xu W, Auger FA, Germain L (1999) Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cell Dev Biol Anim 35(6):318–326

    Article  CAS  Google Scholar 

  8. Havlickova B, Biro T, Mescalchin A, Arenberger P, Paus R (2004) Towards optimization of an organotypic assay system that imitates human hair follicle-like epithelial-mesenchymal interactions. Br J Dermatol 151(4):753–765

    Article  CAS  Google Scholar 

  9. Larouche D, Cuffley K, Paquet C, Germain L (2011) Tissue-engineered skin preserving the potential of epithelial cells to differentiate into hair after grafting. Tissue Eng Part A 17(5–6):819–830

    Article  CAS  Google Scholar 

  10. Krugluger W, Rohrbacher W, Laciak K, Moser K, Moser C, Hugeneck J (2005) Reorganization of hair follicles in human skin organ culture induced by cultured human follicle-derived cells. Exp Dermatol 14(8):580–585

    Article  Google Scholar 

  11. Geer DJ, Swartz DD, Andreadis ST (2004) In vivo model of wound healing based on transplanted tissue-engineered skin. Tissue Eng 10(7–8):1006–1017

    Article  CAS  Google Scholar 

  12. Escamez MJ, Garcia M, Larcher F, Meana A, Munoz E, Jorcano JL, Del Rio M (2004) An in vivo model of wound healing in genetically modified skin-humanized mice. J Invest Dermatol 123(6):1182–1191

    Article  CAS  Google Scholar 

  13. Martinez-Santamaria L, Guerrero-Aspizua S, Del Rio M (2012) Skin bioengineering: preclinical and clinical applications. Actas Dermosifiliogr 103(1):5–11

    Google Scholar 

  14. Maldonado AA, Cristobal L, Martin-Lopez J, Mallen M, Garcia-Honduvilla N, Bujan J (2014) A novel model of human skin pressure ulcers in mice. PLoS One 9(10):e109003

    Article  Google Scholar 

  15. Momtazi M, Kwan P, Ding J, Anderson CC, Honardoust D, Goekjian S, Tredget EE (2013) A nude mouse model of hypertrophic scar shows morphologic and histologic characteristics of human hypertrophic scar. Wound Repair Regen 21(1):77–87

    Article  Google Scholar 

  16. Li S, Thangapazham RL, Wang JA, Rajesh S, Kao TC, Sperling L, Darling TN (2011) Human TSC2-null fibroblast-like cells induce hair follicle neogenesis and hamartoma morphogenesis. Nat Commun 2:235

    Article  Google Scholar 

  17. Thangapazham RL, Klover P, Wang JA, Zheng Y, Devine A, Li S, Darling TN (2014) Dissociated human dermal papilla cells induce hair follicle neogenesis in grafted dermal-epidermal composites. J Invest Dermatol 134(2):538–540

    Article  CAS  Google Scholar 

  18. Higgins CA, Chen JC, Cerise JE, Jahoda CA, Christiano AM (2013) Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. Proc Natl Acad Sci U S A 110(49):19679–19688

    Article  CAS  Google Scholar 

  19. Wu X, Scott L Jr, Washenik K, Stenn K (2014) Full-thickness skin with mature hair follicles generated from tissue culture expanded human cells. Tissue Eng Part A 20(23–24):3314–3321

    Article  Google Scholar 

  20. Wen J, Li X, Leng X, Xu X, Wu X (2017) An advanced mouse model for human skin wound healing. Exp Dermatol 26(5):433–435

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Research and Development Program of China (2017YFA0104604), General Program of National Natural Science Foundation of China (81772093), and Shandong Taishan Scholar Award (tshw201502065).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mi, J., Chen, S., Xu, L., Wen, J., Xu, X., Wu, X. (2019). Human Reconstructed Skin in a Mouse Model. In: Böttcher-Haberzeth, S., Biedermann, T. (eds) Skin Tissue Engineering. Methods in Molecular Biology, vol 1993. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9473-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9473-1_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9472-4

  • Online ISBN: 978-1-4939-9473-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics