Skip to main content

The Role of Redox in Signal Transduction

  • Protocol
  • First Online:
Redox-Mediated Signal Transduction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1990))

  • 838 Accesses

Abstract

It is the functioning of efficient cell signaling which is vital for the survival of cells, whether it is a simple prokaryote or a complex eukaryote, including both animals and plants. Over many years various components have been identified and recognized as crucial for the transduction of signals in cells, including small organic molecules and ions. Many of the mechanisms allow for a relatively rapid switching of signals, on or off, with common examples being the G proteins and protein phosphorylation. However, it has become apparent that other amino acid modifications are also vitally important. This includes reactions with nitric oxide, for example S-nitrosation (S-nitrosylation), and, of particular relevance here, oxidation of cysteine residues. Such oxidation will be dependent on the redox status of the intracellular environment in which that protein resides, and this will in turn be dictated by the presence of pro-oxidants and antioxidants, either produced by the cell itself or from the cell’s environment. Here, the chemistry of redox modification of amino acids is introduced, and a general overview of the role of redox in mediating signal transduction is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hancock JT (1997) Superoxide, hydrogen peroxide and nitric oxide as signalling molecules: their production and role in disease. Br J Biomed Sci 54:38–46

    CAS  PubMed  Google Scholar 

  2. Dröge W (2002) Free Radicals in physiological control of cell function. Physiol Rev 82:47–95

    Article  Google Scholar 

  3. Neill SJ, Desikan R, Hancock JT (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    Article  CAS  Google Scholar 

  4. Colavitti R, Finkel T (2005) Reactive oxygen species as mediators of cellular senescence. IUBMB Life 57:277–281

    Article  CAS  Google Scholar 

  5. Hancock JT (2009) The role of redox mechanisms in cell signaling. Mol Biotechnol 43:162–166

    Article  CAS  Google Scholar 

  6. Vanderauwera S, Zimmermann P, Rombauts S, Vandenbeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F (2005) Genome-wide analysis of hydrogen peroxide–regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821

    Article  CAS  Google Scholar 

  7. Ullrich V, Kissner R (2006) Redox signaling: bioinorganic chemistry at its best. J Inorg Biochem 100:2079–2086

    Article  CAS  Google Scholar 

  8. Hancock JT, Whiteman M (2014) Hydrogen sulfide and cell signaling: team player or referee? Plant Physiol Biochem 78:37–42

    Article  CAS  Google Scholar 

  9. Hancock JT (2016) Cell Signalling, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  10. Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  11. Perazzolli M, Romero-Puertas MC, Delledonne M (2006) Modulation of nitric oxide bioactivity by plant haemoglobins. J Exp Bot 57:479–488

    Article  CAS  Google Scholar 

  12. Salmeen A, Anderson JN, Myers MP, Meng TC, Hinks JA, Tonks NK, Barford D (2003) Redox regulation of protein tyrosine phosphatase 1B involves a novel sulfenyl-amide intermediate. Nature 423:769–773

    Article  CAS  Google Scholar 

  13. Van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H (2003) Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423:773–777

    Article  Google Scholar 

  14. Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    Article  CAS  Google Scholar 

  15. Sen N, Paul BD, Gadalla MM et al (2012) Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol Cell 45:13–24

    Article  CAS  Google Scholar 

  16. Dixon DP, Skipsey M, Grundy NM, Edwards R (2005) Stress-induced protein S-glutathionylation in Arabidopsis. Plant Physiol 138:2233–2244

    Article  CAS  Google Scholar 

  17. Hancock J, Desikan R, Harrison J, Bright J, Hooley R, Neill S (2006) Doing the unexpected: proteins involved in hydrogen peroxide perception. J Exp Bot 57:1711–1718

    Article  CAS  Google Scholar 

  18. Cho S-H, Lee C-C, Ahn Y, Kim H, Yang K-S, Lee S-R (2004) Redox regulation of PTEN and protein tyrosine phosphatase in H2O2-mediated cell signalling. FEBS Lett 560:7–13

    Article  CAS  Google Scholar 

  19. Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ (2005) A novel role for ETR1: hydrogen peroxide signalling in stomatal guard cells. Plant Physiol 137:831–834

    Article  CAS  Google Scholar 

  20. Hancock JT, Henson D, Nyirenda M, Desikan R, Harrison J, Lewis L, Hughes J, Neill SJ (2005) Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiol Biochem 43:828–835

    Article  CAS  Google Scholar 

  21. Lee C, Lee SM, Mukhopadhyay P, Kim SJ, Lee SC, Ahn WS, Yu MH, Stroz G, Ryu SE (2004) Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat Struct Mol Biol 11:1179–1185

    Article  CAS  Google Scholar 

  22. Zhang Y, Keszler A, Broniowska KA, Hogg N (2005) Characterization and application of the biotin-switch assay for the identification of S-nitrosated proteins. Free Radic Biol Med 38:871–881

    Google Scholar 

  23. Schürmann P, Jacquot JP (2000) Plant thioredoxin systems revisited. Annu Rev Plant Physiol Plant Mol Biol 51:371–400

    Article  Google Scholar 

  24. Lemaire SD (2004) The glutaredoxin family in oxygenic photosynthetic organisms. Photosynth Res 79:305–318

    Article  CAS  Google Scholar 

  25. Collin V, Lankemeyer P, Miginiac-Maslow M, Hirasawa M, Knaff DB, Dietz KJ, Issakidis-Bourguet E (2004) Characterization of plastidial thioredoxins belonging to the new y-type. Plant Physiol 136:4088–4095

    Article  CAS  Google Scholar 

  26. Rouhier N, Gelhaye E, Sautiere PE, Brun A, Laurent P, Tagu D, Gerard J, De Fay E, Meyer Y, Jacquot JP (2001) Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. Plant Physiol 127:1299–1309

    Article  CAS  Google Scholar 

  27. Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–984

    Article  CAS  Google Scholar 

  28. Malik SI, Hussain A, Yun BW, Spoel SH, Loake GJ (2011) GSNOR-mediated de-nitrosylation in the plant defence response. Plant Sci 181:540–544

    Article  CAS  Google Scholar 

  29. Yu M, Yun BW, Spoel SH, Loake GJ (2012) A sleigh ride through the SNO: regulation of plant immune function by protein S-nitrosylation. Curr Opin Plant Biol 15:424–430

    Article  CAS  Google Scholar 

  30. Hancock JT (2003) The principles of cell signalling. In: Kumar S, Bentley PJ (eds) On Growth, Form and Computers. Academic, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Hancock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hancock, J.T. (2019). The Role of Redox in Signal Transduction. In: Hancock, J., Conway, M. (eds) Redox-Mediated Signal Transduction. Methods in Molecular Biology, vol 1990. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9463-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9463-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9461-8

  • Online ISBN: 978-1-4939-9463-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics