Skip to main content

Neuron-Glia Interactions Studied with In Vitro Co-Cultures

  • Protocol
  • First Online:
Cell Culture Techniques

Part of the book series: Neuromethods ((NM,volume 145))

Abstract

The complexity of neuronal cell structures and functions requires specific methods of culture to determine how alteration in or among cells gives rise to brain dysfunction and disease. In this context, the primary culture of neuronal cells plays an important role in the study of this topic, especially related to neuronal cells survival and differentiation, nutritional requirements, but also neuronal development and spine formation. For all these investigations and applications, it is very important that primary neurons are cultured under conditions that resemble the in vivo environment as closely as possible. In this line, glia-neuron sandwich co-cultures are an extremely useful tool in vitro to evaluate cell-to-cell interaction relaying on the release of soluble factors and could be a suitable method in the study of the contribution of glia-secreted molecules to neuronal development and spine formation. To this end, this chapter describes the procedures to set up a sandwich co-culture system from primary rat glial cells and hippocampal neurons, and highlights advantages and disadvantages of this approach and its possible application in the investigation of individual glial factor impact on neuronal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biber K, Neumann H, Inoue K, Boddeke HWGM (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30(11):596–602

    Article  CAS  PubMed  Google Scholar 

  2. Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298(5593):556–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bezzi P et al (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391(6664):281–285

    Article  CAS  PubMed  Google Scholar 

  4. Jäkel S, Dimou L (2017) Glial cells and their function in the adult brain: a journey through the history of their ablation. Front Cell Neurosci 11:24

    Article  PubMed  PubMed Central  Google Scholar 

  5. Perea G, Sur M, Araque A (2014) Neuron-glia networks: integral gear of brain function. Front Cell Neurosci 8:378

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vezzani A, Viviani B (2015) Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 96:70–82

    Article  CAS  PubMed  Google Scholar 

  7. Wang F, Yuan T, Pereira A, Verkhratsky A, Huang JH, Huang JH (2016) Glial cells and synaptic plasticity. Neural Plast 2016:5042902

    PubMed  PubMed Central  Google Scholar 

  8. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6(8):626–640

    Article  CAS  PubMed  Google Scholar 

  9. Stogsdill JA, Eroglu C (2017) The interplay between neurons and glia in synapse development and plasticity. Curr Opin Neurobiol 42:1–8

    Article  CAS  PubMed  Google Scholar 

  10. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science (80-) 291(5504):657–661

    Article  CAS  Google Scholar 

  11. Schreiner B et al (2015) Astrocyte depletion impairs redox homeostasis and triggers neuronal loss in the adult CNS. Cell Rep 12(9):1377–1384

    Article  CAS  PubMed  Google Scholar 

  12. Tsai H-H et al (2012) Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337(6092):358–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Allen NJ (2013) Role of glia in developmental synapse formation. Curr Opin Neurobiol 23(6):1027–1033

    Article  CAS  PubMed  Google Scholar 

  14. Keenan TM, Folch A (2008) Biomolecular gradients in cell culture systems. Lab Chip 8(1):34–57

    Article  CAS  PubMed  Google Scholar 

  15. Wolff A, Antfolk M, Brodin B, Tenje M (2015) In vitro blood-brain barrier models-an overview of established models and new microfluidic approaches. J Pharm Sci 104(9):2727–2746

    Article  CAS  PubMed  Google Scholar 

  16. Marx U et al (2016) Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 33(3):272–321

    PubMed  PubMed Central  Google Scholar 

  17. Di Lullo E, Kriegstein AR (2017) The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci 18(10):573–584

    Article  PubMed  PubMed Central  Google Scholar 

  18. Viviani B et al (2006) Interleukin-1β released by gp120 drives neural death through tyrosine phosphorylation and trafficking of NMDA receptors. J Biol Chem 281(40):30212–30222

    Article  CAS  PubMed  Google Scholar 

  19. Viviani B, Corsini E, Binaglia M, Galli CL, Marinovich M (2001) Reactive oxygen species generated by glia are responsible for neuron death induced by human immunodeficiency virus-glycoprotein 120 in vitro. Neuroscience 107(1):51–58

    Article  CAS  PubMed  Google Scholar 

  20. Viviani B et al (2006) Interleukin-1 beta released by gp120 drives neural death through tyrosine phosphorylation and trafficking of NMDA receptors. J Biol Chem 281(40):30212–30222

    Article  CAS  PubMed  Google Scholar 

  21. Banker G, Goslin K (1998) Culturing nerve cells, 2nd edn. MIT, Cambridge, MA

    Google Scholar 

  22. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85(3):890–902

    Article  CAS  PubMed  Google Scholar 

  23. Giulian D, Baker TJ (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6(8):2163–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research is supported by JPI-HDHL – Selenius – Selenium in early life to enhance neurodevelopment in unfavorable settings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Viviani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mancino, S., Serafini, M.M., Viviani, B. (2019). Neuron-Glia Interactions Studied with In Vitro Co-Cultures. In: Aschner, M., Costa, L. (eds) Cell Culture Techniques. Neuromethods, vol 145. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9228-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9228-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9227-0

  • Online ISBN: 978-1-4939-9228-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics