Skip to main content

Electrophysiological Neuromethodologies

  • Protocol
  • First Online:
Cell Culture Techniques

Part of the book series: Neuromethods ((NM,volume 145))

  • 1298 Accesses

Abstract

Neurotoxic chemicals can alter neuronal excitability and disrupt synaptic transmission in the central nervous system to induce a variety of neurological disorders. These neurotoxic effects can be assessed with high sensitivity and in functional tissue and real time by using electrophysiological recording techniques in freshly isolated brain slices, typically in rats or mice. This provides far greater sensitivity than neurochemical measures of neurotransmission and permits assessment of function of both pre- and postsynaptic elements of the synapse, from the same slice. Preparation of brain slices from adult rodents has been a challenge due to poor viability of the tissue post-slicing. This has dramatically hampered use of these techniques in experimental paradigms in which neurophysiologic effects of toxic chemicals can be assessed during chronic exposure of animals over their life span. This chapter presents a simplified method for preparing brain slices from adult animals. It applies voltage- and current-clamp recordings in slices of the brainstem and cerebellum, two brain regions vital to motor function, for which neurotoxic chemicals have been shown to act. However with slight modifications, the principles could be applied to other brain regions such as hippocampus or corpus striatum to study effects of neurotoxic chemicals on central nervous system synaptic function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamamoto C, McIlwain H (1966) Electrical activities in thin sections from mammalian brain maintained in chemically-defined media in vitro. J Neurochem 13:1333–1343

    CAS  PubMed  Google Scholar 

  2. Yuan Y, Atchison WD (1993) Disruption by methylmercury of membrane excitability and synaptic transmission of CA1 neurons in hippocampal slices of the rat. Toxicol Appl Pharmacol 120:203–215

    CAS  PubMed  Google Scholar 

  3. Yuan Y, Atchison WD (1995) Methylmercury acts at multiple sites to block hippocampal synaptic transmission. J Pharmacol Exp Ther 275:1308–1316

    CAS  PubMed  Google Scholar 

  4. Yuan Y, Atchison WD (1997) Action of methylmercury on GABAA receptor-mediated inhibition is primarily responsible for its early stimulatory effects on hippocampal CA1 synaptic transmission. J Pharmacol Exp Ther 282:64–73

    Google Scholar 

  5. Yuan Y, Atchison WD (1999) Comparative effects of methylmercury on parallel-fiber and climbing-fiber responses of rat cerebellar slices. J Pharmacol Exp Ther 288:1015–1025

    CAS  PubMed  Google Scholar 

  6. Yuan Y, Atchison WD (2003) Methylmercury differentially affects GABAA receptor-mediated spontaneous IPSCs in Purkinje and granule cells of rat cerebellar slices. J Physiol Lond 550:191–204

    Google Scholar 

  7. Yuan Y, Atchison WD (2007) Methylmercury-induced increase of intracellular Ca2+ concentration in presynaptic fibers causes increased frequency of spontaneous synaptic responses in cerebellar slice of rat. Mol Pharm 71:1109–1121

    Google Scholar 

  8. Yuan Y, Atchison WD (2016) Multiple sources of Ca2+ contribute to methylmercury-induced increased frequency of spontaneous inhibitory synaptic responses in cerebellar slices of rat. Toxicol Sci 150:117–130

    Google Scholar 

  9. Aghajanian GK, Rasmussen K (1989) Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse 3:331–338

    CAS  PubMed  Google Scholar 

  10. Salin PA, Prince DA (1996) Electro-physiological mapping of GABAA receptor-mediated inhibition in adult rat somatosensory cortex. J Neurophysiol 75:1589–1600

    Google Scholar 

  11. Moyer JR Jr, Brown TH (1998) Methods for whole-cell recording from visually preselected neurons of perirhinal cortex in brain slices from young and aging rats. J Neurosci Methods 86:35–54

    PubMed  Google Scholar 

  12. Schmidt-Hieber C, Jonas P, Biochofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of adult hippocampus. Nature 429:184–187

    CAS  PubMed  Google Scholar 

  13. Dougherty KA, Islam T, Johnston D (2012) Intrinsic excitability of CA1 pyramidal neurons from the rat dorsal and ventral hippocampus. J Physiol 590:5707–5722

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mainen ZF, Maletic-Savatic M, Shi SH (1999) Two-photon imaging in living brain slices. Methods 18:231–239

    CAS  PubMed  Google Scholar 

  15. Tanaka Y, Tanaka Y, Furuta T, Yanagawa Y, Kaneko T (2008) The effects of cutting solutions on the viability of GABAergic interneurons in cerebral cortical slice of adult mice. J Neurosci Methods 171:118–125

    CAS  PubMed  Google Scholar 

  16. Ye JH, Zhang J, Xiao C, Kong JQ (2006) Patch-clamp studies in the CNS illustrate a simple new method for obtaining viable neurons in rat brain slices: glycerol replacement of NaCl protects CNS neurons. J Neurosci Methods 158:251–259

    CAS  PubMed  Google Scholar 

  17. Lerchner W, Xiao C, Nashmi R, Slimko EM, van Trigt L, Lester HA (2007) Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl− channel. Neuron 54:35–49

    CAS  PubMed  Google Scholar 

  18. Nashmi R, Velumian AA, Chung I, Zhang L, Agrawal SK, Fehlings MG (2002) Patch-clamp recordings from white matter glia in thin longitudinal slices of adult rat spinal cord. J Neurosci Methods 117:159–166

    PubMed  Google Scholar 

  19. Balthasar N, Mery PF, Magoulas CB, Mathers KE, Martin A, Mollard P (2003) Growth hormone-releasing hormone (GHRH) neurons in GHRH-enhanced green fluorescent protein transgenic mice: a ventralhypothalamic network. Endocrinology 144:2728–2740

    CAS  PubMed  Google Scholar 

  20. Richerson GB, Messer C (1995) Effect of composition of experimental solutions on neuronal survival during rat brain slicing. Exp Neurol 131:133–143

    CAS  PubMed  Google Scholar 

  21. Rice ME (1999) Use of ascorbate in preparation and maintenance of brain slices. Methods Companion Methods Enzymol 18:144–149

    CAS  Google Scholar 

  22. Brahma B, Forman RE, Stewart EE, Nicholson C, Rice ME (2000) Ascorbate inhibits edema in brain slices. J Neurochem 74:1263–1270

    CAS  PubMed  Google Scholar 

  23. MacGregor DG, Chesler M, Rice ME (2001) HEPES prevents edema in rat brain slices. Neurosci Lett 303:141–144

    CAS  PubMed  Google Scholar 

  24. Ting JT, Daigle TL, Chen Q, Feng G (2014) Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Meth Mol Biol 1183:221–242

    Google Scholar 

  25. Llano DA, Slater BJ, Lesicko AM, Stebbings KA (2014) An auditory colliculothalamocortical brain slice preparation in mouse. J Neurophysiol 111:197–207

    CAS  PubMed  Google Scholar 

  26. Dergacheva O, Dyavanapalli J, Piñol RA, Mendelowitz D (2014) Chronic intermittent hypoxia and hypercapnia inhibit the hypothalamic paraventricular nucleus neurotransmission to parasympathetic cardiac neurons in the brain stem. Hypertension 64(3):597–603

    CAS  PubMed  Google Scholar 

  27. Pan G, Li Y, Geng HY, Yang JM, Li KX, Li XM (2015) Preserving GABAergic interneurons in acute brain slices of mice using the N-methyl-D-glucamine-based artificial cerebrospinal fluid method. Neurosci Bull 31:265–270

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang S, Uusisaari MY (2013) Physiological temperature during brain slicing enhances the quality of acute slice preparations. Front Cell Neurosci 7:48. https://doi.org/10.3389/fncel.2013.00048. eCollection 2013

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ankri L, Yarom Y, Uusisaari MY (2014) Slice it hot: acute adult brain slicing in physiological temperature. J Vis Exp (92):e52068. https://doi.org/10.3791/52068

  30. Ting JT, Lee BR, Chong P, Soler-Llavina G, Cobbs C, Koch C, Zeng H, Lein E (2018) Preparation of acute brain slices using an optimized N-methyl-D-glucamine protective recovery method. J Vis Exp (132):e53825. https://doi.org/10.3791/53825

  31. Wang L, Zhang X, Xu H, Zhou L, Jiao R, Liu W, Zhu F, Kang X, Liu B, Teng S, Wu Q, Li M, Dou H, Zuo P, Wang C, Wang S, Zhou Z (2014) Temporal components of cholinergic terminal to dopaminergic terminal transmission in dorsal striatum slices of mice. J Physiol 592(16):3559–3576

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dergacheva O (2015) Chronic intermittent hypoxia alters neurotransmission from lateral paragigantocellular nucleus to parasympathetic cardiac neurons in the brain stem. J Neurophysiol 113:380–389

    PubMed  Google Scholar 

  33. Jiang X, Shen S, Cadwell CR, Berens P, Sinz F, Ecker AS, Patel S, Tolias AS (2015) Principles of connectivity among morphologically defined cell types in adult neocortex. Science 350(6264):aac9462

    PubMed  PubMed Central  Google Scholar 

  34. Altmann L, Weinand-Haerer A, Lilienthal H, Wiegand H (1995) Maternal exposure to polychlorinated biphenyls inhibits long-term potentiation in the visual cortex of adult rats. Neurosci Lett 202:53–56

    CAS  PubMed  Google Scholar 

  35. Altmann L, Lilienthal H, Hany J, Wiegand H (1998) Inhibition of long-term potentiation in developing rat visual cortex but not hippocampus by in utero exposure to polychlorinated biphenyls. Brain Res Dev Brain Res 110:257–260

    CAS  PubMed  Google Scholar 

  36. Hussain RJ, Parsons PJ, Carpenter DO (2000) Effects of lead on long-term potentiation in hippocampal CA3 vary with age. Brain Res Dev Brain Res 121:243–252

    CAS  PubMed  Google Scholar 

  37. Carpenter DO, Hussain RJ, Berger DF, Lombardo JP, Park HY (2002) Electrophysiologic and behavioral effects of perinatal and acute exposure of rats to lead and polychlorinated biphenyls. Environ Health Perspect 110(Suppl 3):377–386

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dasari S, Yuan Y (2009) Low level postnatal methylmercury exposure in vivo alters developmental forms of short-term synaptic plasticity in the visual cortex of rat. Toxicol Appl Pharmacol 240:412–422

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dasari S, Yuan Y (2010) Methylmercury exposure in vivo induces a long-lasting epileptiform activity in layer II/III cortical neurons of cortical slices of rat. Toxicol Lett 193:138–143

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kummer KK, El Rawas R, Kress M, Saria A, Zernig G (2015) Social interaction and cocaine conditioning in mice increase spontaneous spike frequency in the nucleus accumbens or septal nuclei as revealed by multielectrode array recordings. Pharmacology 95:42–49

    CAS  PubMed  Google Scholar 

  41. Li XM, Gu Y, She JQ, Zhu DM, Niu ZD, Wang M, Chen JT, Sun LG, Ruan DY (2006) Lead inhibited N-methyl-D-aspartate receptor-independent long-term potentiation involved ryanodine-sensitive calcium stores in rat hippocampal area CA1. Neuroscience 139:463–467

    CAS  PubMed  Google Scholar 

  42. Penner R (1995) A practical guide to patch clamping. In: Sakmann B, Neher E (eds) Single-channel recording. Plenum, New York, pp 3–30

    Google Scholar 

  43. Glover JC, Sato K, Sato Y-M (2008) Using voltage-sensitive dye recording to image the functional development of neuronal circuits in vertebrate embryos. Dev Neurobiol 68:804–816

    PubMed  Google Scholar 

  44. Carlson GC, Coulter DA (2008) In vitro functional imaging in brain slices using fast voltage-sensitive dye imaging combined with whole-cell patch recording. Nat Protoc 3:249–255

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chemla S, Chavane F (2010) Voltage-sensitive dye imaging: technique review and models. J Physiol Paris 104:40–50

    CAS  PubMed  Google Scholar 

  46. Coulter DA, Yue C, Ang CW, Weissinger F, Goldberg E, Hsu FC, Carlson GC, Takano H (2011) Hippocampal microcircuit dynamics probed using optical imaging approaches. J Physiol (Land) 589:1893–1903

    CAS  Google Scholar 

  47. Takano H, Coulter DA (2012) Imaging of hippocampal circuits in epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies [internet], 4th edn. National Center for Biotechnology Information (US), Bethesda

    Google Scholar 

  48. Städele C, Andres P, Stein W (2012) Simultaneous measurement of membrane potential changes in multiple pattern generating neurons using voltage sensitive dye imaging. J Neurosci Methods 203:78–88

    PubMed  Google Scholar 

  49. Wright BJ, Jackson MB (2015) Voltage imaging in the study of hippocampal circuit function and plasticity. Adv Exp Med Biol 859:197–211

    PubMed  Google Scholar 

  50. Kramer RH, Fortin DL, Trauner D (2009) New photochemical tools for controlling neuronal activity. Curr Opin Neurobiol 19:544–552

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Szobota S, Isacoff EY (2010) Optical control of neuronal activity. Annu Rev Biophys 39:329–348

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Häusser M (2014) Optogenetics: the age of light. Nat Methods. 2014 11:1012–1014

    PubMed  Google Scholar 

  53. Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 18:1213–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Song C, Knӧpfel T (2016) Optogenetics enlightens neuroscience drug discovery. Nat Rev Drug Discov 15:97–109

    CAS  PubMed  Google Scholar 

  55. Kim CK, Adhikari A, Deisseroth K (2017) Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci 18:222–235

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rost BR, Schneider-Warme F, Schmitz D, Hegemann P (2017) Optogenetic tools for subcellular applications in neuroscience. Neuron 96:572–603

    CAS  PubMed  Google Scholar 

  57. Lasley SM, Gilbert ME (1996) Presynaptic glutamatergic function in dentate gyrus in vivo is diminished by chronic exposure to inorganic lead. Brain Res 736:125–134

    CAS  PubMed  Google Scholar 

  58. Lasley SM, Gilbert ME (2000) Glutamatergic component underlying lead-induced impairment in hippocampal synaptic plasticity. Neurotoxicology 21:1057–1068

    CAS  PubMed  Google Scholar 

  59. Suszkiw JB (2004) Presynaptic disruption of transmitter release by lead. Neurotoxicology 25:599–604

    CAS  PubMed  Google Scholar 

  60. Altmann L, Mundy WR, Ward TR, Fastabend A, Lilienthal H (2001) Developmental exposure of rats to a reconstituted PCB mixture or aroclor 1254: effects on long-term potentiation and [3H]MK-801 binding in occipital cortex and hippocampus. Toxicol Sci 61:321–330

    Google Scholar 

  61. Gilbert ME, Mundy WR, Crofton KM (2000) Spatial learning and long-term potentiation in the dentate gyrus of the hippocampus of animals developmentally exposure to aroclor 1254. Toxicol Sci 57:102–111

    CAS  PubMed  Google Scholar 

  62. Gilbert ME (2003) Perinatal exposure to polychlorinated biphenyls alters excitatory synaptic transmission and short-term plasticity in the hippocampus of the adult rat. Neurotoxicology 24:851–860

    CAS  PubMed  Google Scholar 

  63. Pitkänen RI, Korpi ER, Oja SS (1985) Cerebral cortex slices in sodium-free medium: ~on of:synaptic vesicles. Brain Res 326:384–387

    PubMed  Google Scholar 

  64. Berdichevsky E, Mufioz C, Riveros N, Cartier L, Orrego F (1987) Neuropathological changes in the rat brain cortex in vitro: effects of kainic acid and of ion substitutions. Brain Res 423:213–220

    CAS  PubMed  Google Scholar 

  65. Aitken PG, Breese GR, Dudek FF, Edwards F, Espanol MT, Larkman PM, Lipton P, Newman GC, Nowak TS Jr, Panizzon KL, Raley-Susrnan KM, Reid KH, Rice ME, Sarvey JM, Schoepp DD, Segal M, Taylor CP, Teyler TJ, Voulalas PJ (1995) Preparative methods for brain slices: a discussion. J Neurosci Methods 59:139–149

    CAS  PubMed  Google Scholar 

  66. The Axon guide for electrophysiology and biophysics laboratory techniques. Axon Instruments, Union City. https://mdc.custhelp.com/euf/assets/content/Axon%20Guide%203rd%20edition.pdf

  67. Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275:220–224

    CAS  PubMed  Google Scholar 

  68. O’Donovan MJ, Rnzel J (1997) Synaptic depression: a dynamic regulator of synaptic communication with varied functional roles. Trends Neurosci 20:431–433

    PubMed  Google Scholar 

  69. Chance FS, Nelson SB, Abbott LF (1998) Synaptic depression and the temporal response characteristics of V1 cells. J Neurosci 18(12):4785–4799

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Abbott LF, Regehr WG (2004) Synaptic computation. Nature 431:796–803

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yukun Yuan or William D. Atchison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yuan, Y., Atchison, W.D. (2019). Electrophysiological Neuromethodologies. In: Aschner, M., Costa, L. (eds) Cell Culture Techniques. Neuromethods, vol 145. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9228-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9228-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9227-0

  • Online ISBN: 978-1-4939-9228-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics