Skip to main content

Computational Analysis of Aneuploidy in Pluripotent Stem Cells

  • Protocol
  • First Online:
Computational Stem Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1975))

Abstract

Due to their unique cellular features, pluripotent stem cells (PSCs) acquire chromosomal aberrations at a rather high frequency during their growth in culture. Analysis of chromosomal integrity should be routinely performed and usually is done at the DNA level of the cells. RNA sequencing (RNA-Seq) has recently become the basic tool for transcriptional studies. Therefore, methods that utilize this already available data to inspect the genomic integrity are very valuable. In this chapter, we provide a practical guide to implement methods of detection of chromosomal aberrations, which are based on RNA-Seq data. The expression-based karyotyping (e-Karyotyping) method is based on global gene expression analysis, while the expressed-SNP-karyotyping (eSNP-Karyotyping) method is based on changes in the ratio between alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weissbein U, Benvenisty N, Ben-David U (2014) Genome maintenance in pluripotent stem cells. J Cell Biol 204:153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lamm N, Ben-David U, Golan-Lev T et al (2016) Genomic instability in human pluripotent stem cells arises from replicative stress and chromosome condensation defects. Cell Stem Cell 18:253–261

    Article  CAS  PubMed  Google Scholar 

  3. Merkle FT, Ghosh S, Kamitaki N et al (2017) Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature 545:229–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ben-David U, Arad G, Weissbein U et al (2014) Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nat Commun 5:4825

    Article  CAS  PubMed  Google Scholar 

  5. Avery S, Hirst AJ, Baker D et al (2013) BCL-XL mediates the strong selective advantage of a 20q11.21 amplification commonly found in human embryonic stem cell cultures. Stem Cell Rep 1:379–386

    Article  CAS  Google Scholar 

  6. Nguyen HT, Geens M, Mertzanidou A et al (2014) Gain of 20q11.21 in human embryonic stem cells improves cell-survival by increased expression of Bcl-xL. Mol Hum Reprod 20:168–177

    Article  CAS  PubMed  Google Scholar 

  7. Ben-David U, Mayshar Y, Benvenisty N (2013) Virtual karyotyping of pluripotent stem cells on the basis of their global gene expression profiles. Nat Protoc 8:989–997

    Article  PubMed  Google Scholar 

  8. Mayshar Y, Ben-David U, Lavon N et al (2010) Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7:521–531

    Article  CAS  PubMed  Google Scholar 

  9. Ben-David U, Mayshar Y, Benvenisty N (2011) Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells. Cell Stem Cell 9:97–102

    Article  CAS  PubMed  Google Scholar 

  10. Weissbein U, Ben-David U, Benvenisty N (2014) Virtual karyotyping reveals greater chromosomal stability in neural cells derived by transdifferentiation than those from stem cells. Cell Stem Cell 15:687–691

    Article  CAS  PubMed  Google Scholar 

  11. Weissbein U, Schachter M, Egli D et al (2016) Analysis of chromosomal aberrations and recombination by allelic bias in RNA-Seq. Nat Commun 7:12144

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim D, Pertea G, Trapnell C et al (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  14. Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  PubMed  Google Scholar 

  16. Lingjaerde OC, Baumbusch LO, Liestol K et al (2005) CGH-Explorer: a program for analysis of array-CGH data. Bioinformatics 21:821–822

    Article  CAS  PubMed  Google Scholar 

  17. DePristo MA, Banks E, Poplin R et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucleic Acids Res 39:2010–2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Weissbein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Weissbein, U. (2019). Computational Analysis of Aneuploidy in Pluripotent Stem Cells. In: Cahan, P. (eds) Computational Stem Cell Biology. Methods in Molecular Biology, vol 1975. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9224-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9224-9_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9223-2

  • Online ISBN: 978-1-4939-9224-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics