Skip to main content

Preparation and Purification of Oligodeoxynucleotide Duplexes Containing a Site-Specific, Reduced, Chemically Stable Covalent Interstrand Cross-Link Between a Guanine Residue and an Abasic Site

  • Protocol
  • First Online:
Non-Natural Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1973))

Abstract

Methods for the preparation of DNA duplexes containing interstrand covalent cross-links may facilitate research in the fields of biochemistry, molecular biology, nanotechnology, and materials science. Here we report methods for the synthesis and isolation of DNA duplexes containing a site-specific, chemically stable, reduced covalent interstrand cross-link between a guanine residue and an abasic site. The method uses experimental techniques and equipment that are common in most biochemical laboratories and inexpensive, commercially available oligonucleotides and reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schärer OD (2005) DNA interstrand crosslinks: natural and drug-induced DNA adducts that induce unique cellular responses. Chembiochem 6:27–32

    Article  PubMed  Google Scholar 

  2. Clauson C, Schärer OD, Niedernhofer LJ (2013) Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harb Perspect Biol 5. a012732/012731-a012732/012725

    Google Scholar 

  3. Imani-Nejad M, Johnson KM, Price NE, Gates KS (2016) A new cross-link for an old cross-linking drug: the nitrogen mustard anticancer agent mechlorethamine generates cross-links derived from abasic sites in addition to the expected drug-bridged cross-links. Biochemistry 55:7033–7041

    Article  Google Scholar 

  4. Stone MP, Cho YJ, Huang H, Kim HY, Kozekov ID, Kozekova A, Wang H, Minko IG, Lloyd RS, Harris TM, Rizzo CJ (2008) Interstrand cross-links induced by α,β-unsaturated aldehydes derived from lipid peroxidation and environmental sources. Acc Chem Res 41:793–804

    Article  CAS  PubMed  Google Scholar 

  5. Greenberg MM (2014) Abasic and oxidized abasic site reactivity in DNA: enzyme inhibition, cross-linking, and nucleosome-catalyzed reactions. Acc Chem Res 47:646–655

    Article  CAS  PubMed  Google Scholar 

  6. Rajski SR, Williams RM (1998) DNA cross-linking agents as antitumor drugs. Chem Rev 98:2723–2795

    Article  CAS  PubMed  Google Scholar 

  7. Yang Z, Price NE, Johnson KM, Wang Y, Gates KS (2017) Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA. Nucleic Acids Res 45:6275–6283

    Article  CAS  PubMed  Google Scholar 

  8. Catalano MJ, Liu S, Andersen N, Yang Z, Johnson KM, Price NA, Wang Y, Gates KS (2015) Chemical structure and properties of the interstrand cross-link formed by the reaction of guanine residues with abasic sites in duplex DNA. J Am Chem Soc 137:3933–3945

    Article  CAS  PubMed  Google Scholar 

  9. Price NE, Catalano MJ, Liu S, Wang Y, Gates KS (2015) Chemical and structural characterization of interstrand cross-links formed between abasic sites and adenine residue in duplex DNA. Nucleic Acids Res 43:3434–3441

    Article  CAS  PubMed  Google Scholar 

  10. Kato N, Kawasoe Y, Williams HL, Coates E, Roy U, Shi Y, Beese LS, Schärer OD, Yan H, Gottesman ME, Takahashi TS, Gautier J (2017) Sensing and processing of DNA interstrand crosslinks by the mismatch repair pathway. Cell Rep 21:1375–1385

    Article  CAS  PubMed  Google Scholar 

  11. Yang Z, Nejad MI, Gamboa Varela J, Price NE, Wang Y, Gates KS (2017) A role for the base excision repair enzyme NEIL3 in replication-dependent repair of interstrand cross-links derived from psoralen and abasic sites. DNA Repair 52:1–11

    Article  CAS  PubMed  Google Scholar 

  12. Semlow DR, Zhang J, Budzowska M, Drohat AC, Walter JC (2016) Replication-dependent unhooking of DNA interstrand cross-links by the NEIL3 glycosylase. Cell 167:498–511

    Article  CAS  PubMed  Google Scholar 

  13. Huang J-C, Liu S, Bellani MA, Thazhathveetil AK, Ling C, de Winter JP, Wang Y, Wang W, Seidman MM (2013) The DNA translocase FANCM/MHF promotes replication traverse of DNA interstrand cross-links. Mol Cell 52:434–446

    Article  CAS  PubMed  Google Scholar 

  14. Tomás-Gamasa M, Serdjukow S, Su M, Müller M, Carell T (2014) "Post-it" type connected DNA created with a reversible covalent cross-link. Angew Chem Int Ed Eng 53:796–800

    Google Scholar 

  15. Imani-Nejad M, Shi R, Zhang X, Gu L-Q, Gates KS (2017) Sequence-specific covalent capture coupled with high-contrast nanopore detection of a disease-derived nucleic acid sequence. Chembiochem 18:1383–1386

    Article  Google Scholar 

  16. Vieregg JR, Nelson HM, Stoltz BM, Pierce NA (2013) Selective nucleic acid capture with shielded covalent probes. J Am Chem Soc 135:9691–9699

    Article  CAS  PubMed  Google Scholar 

  17. Peng X, Greenberg MM (2008) Facile SNP detection using bifunctional cross-linking oligonucleotide probes. Nucleic Acids Res 36:e31

    Article  PubMed  Google Scholar 

  18. Fujimoto K, Yamada A, Yoshimura Y, Tsukaguchi T, Sakamoto T (2013) Details of the ultrafast DNA photo-cross-linking reaction of 3-cyanovinylcarbazole nucleoside: cis-trans isomeric effect and the application for SNP-based genotyping. J Am Chem Soc 135:16161–16167

    Article  CAS  Google Scholar 

  19. Rajendran A, Endo M, Katsuda Y, Hidaka K, Sugiyama H (2011) Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly. J Am Chem Soc 133:14488–14491

    Article  CAS  Google Scholar 

  20. Chen W, Schuster GB (2013) Structural stabilization of DNA-templated nanostructures: cross-linking with 2,5-bis(2-thienyl)-pyrrole monomers. Org Biomol Chem 11:35–40

    Article  CAS  PubMed  Google Scholar 

  21. Dutta S, Chowdhury G, Gates KS (2007) Interstrand crosslinks generated by abasic sites in duplex DNA. J Am Chem Soc 129:1852–1853

    Article  CAS  PubMed  Google Scholar 

  22. Johnson KM, Price NE, Wang J, Fekry MI, Dutta S, Seiner DR, Wang Y, Gates KS (2013) On the formation and properties of interstrand DNA-DNA cross-links forged by reaction of an Abasic site with the opposing guanine residue of 5’-CAp sequences in duplex DNA. J Am Chem Soc 135:1015–1025

    Article  CAS  PubMed  Google Scholar 

  23. Gamboa Varela J, Gates KS (2015) A simple, high-yield synthesis of DNA duplexes containing a covalent, thermally-reversible interstrand cross-link at a defined location Angew. Chem Int Ed Eng 54:7666–7669

    Article  CAS  Google Scholar 

  24. Price NE, Johnson KM, Wang J, Fekry MI, Wang Y, Gates KS (2014) Interstrand DNA−DNA cross-link formation between adenine residues and Abasic sites in duplex DNA. J Am Chem Soc 136:3483–−3490

    Article  CAS  PubMed  Google Scholar 

  25. Price NE, Li L, Gates KS, Wang Y (2017) Replication and repair of a reduced 2′-deoxyguanosine-abasic site cross-link in human cells. Nucleic Acids Res 45:6486–6493

    Article  CAS  PubMed  Google Scholar 

  26. Gamboa Varela J, Gates KS (2016) Simple, high-yield syntheses of DNA duplexes containing interstrand DNA-DNA cross-links between an N4-aminocytidine residue and an abasic site. Curr Protoc Nucleic Acid Chem 65:5.16.11–15.16.15

    Article  Google Scholar 

  27. Varshney U, van de Sande JH (1991) Specificities and kinetics of uracil excision from uracil-containing DNA oligomers by Escherichia coli uracil DNA glycosylase. Biochemistry 30:4055–4061

    Article  CAS  PubMed  Google Scholar 

  28. Borch RF, Hassid AI (1972) A new method for the methylation of amines. J Org Chem 37:1673–1674

    Article  CAS  Google Scholar 

  29. Romero RM, Rojsittisak P, Haworth IS (2013) Electrophoretic mobility of duplex DNA cross-linked by mechlorethamine at a cytosine-cytosine mismatch pair. Electrophoresis 34:917–924

    Article  CAS  PubMed  Google Scholar 

  30. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a lab manual. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  31. Tataurov AV, You Y, Owczarzy R (2008) Predicting ultraviolet spectrum of single stranded and double stranded deoxyribonucleic acids. Biophys Chem 133:66–70

    Article  CAS  Google Scholar 

  32. Melton D, Lewis CD, Price NE, Gates KS (2014) Covalent adduct formation between the antihypertensive drug hydralazine and abasic sites in double- and single-stranded DNA. Chem Res Toxicol 27:2113–2118

    Article  CAS  PubMed  Google Scholar 

  33. Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560

    Article  CAS  PubMed  Google Scholar 

  34. Gates KS (2009) An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol 22:1747–1760

    Article  CAS  PubMed  Google Scholar 

  35. Gates KS, Nooner T, Dutta S (2004) Biologically relevant chemical reactions of N7-alkyl-2′-deoxyguanosine adducts in DNA. Chem Res Toxicol 17:839–856

    Article  CAS  PubMed  Google Scholar 

  36. Shi Y-B, Hearst JE (1986) Thermostability of double-stranded deoxyribonucleic acids: effects of covalent additions of a psoralen. Biochemistry 25:5895–5902

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We are grateful to the National Institutes of Health for supporting this work (ES021007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent S. Gates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nejad, M.I. et al. (2019). Preparation and Purification of Oligodeoxynucleotide Duplexes Containing a Site-Specific, Reduced, Chemically Stable Covalent Interstrand Cross-Link Between a Guanine Residue and an Abasic Site. In: Shank, N. (eds) Non-Natural Nucleic Acids. Methods in Molecular Biology, vol 1973. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9216-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9216-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9215-7

  • Online ISBN: 978-1-4939-9216-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics