Skip to main content

Examining Gene Expression Patterns Through Whole-Mount In Situ Hybridization

  • Protocol
  • First Online:
Developmental Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1965))

  • 1509 Accesses

Abstract

RNA in situ hybridization is a practical technique that allows investigators to observe temporal and spatial gene expression at the RNA level in the context of whole embryos or tissues. One powerful application of in situ hybridization is to observe the consequences of genetic, toxicologic, or environmental perturbations on gene expression or morphogenesis during development. Herein, I will review the procedure to perform nonradioactive, in situ hybridization on whole-mount mouse or chick embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A 63:378–383

    Article  CAS  Google Scholar 

  2. Acloque H, Wilkinson DG, Nieto MA (2008) In situ hybridization analysis of chick embryos in whole-mount and tissue sections. Methods Cell Biol 87:169–185

    Article  CAS  Google Scholar 

  3. Ortega FG, Lorente JA, Garcia Puche JL, Ruiz MP, Sanchez-Martin RM, de Miguel-Perez D, Diaz-Mochon JJ, Serrano MJ (2015) miRNA in situ hybridization in circulating tumor cells—MishCTC. Sci Rep 5:9207

    Article  Google Scholar 

  4. Swennenhuis JF, Tibbe AG, Levink R, Sipkema RC, Terstappen LW (2009) Characterization of circulating tumor cells by fluorescence in situ hybridization. Cytometry A 75:520–527

    Article  Google Scholar 

  5. Wilkinson DG, Nieto MA (1993) Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol 225:361–373

    Article  CAS  Google Scholar 

  6. Wang J, Hamblet NS, Mark S, Dickinson ME, Brinkman BC, Segil N, Fraser SE, Chen P, Wallingford JB, Wynshaw-Boris A (2006) Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development 133:1767–1778

    Article  CAS  Google Scholar 

  7. Crossley PH, Martin GR (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121:439–451

    CAS  PubMed  Google Scholar 

  8. Crossley PH, Minowada G, MacArthur CA, Martin GR (1996) Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 84:127–136

    Article  CAS  Google Scholar 

  9. Briscoe J, Sussel L, Serup P, Hartigan-O’Connor D, Jessell TM, Rubenstein JL, Ericson J (1999) Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398:622–627

    Article  CAS  Google Scholar 

  10. Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JA, McMahon AP (1994) Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 8:174–189

    Article  CAS  Google Scholar 

  11. Yamaguchi TP, Takada S, Yoshikawa Y, Wu N, McMahon AP (1999) T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev 13:3185–3190

    Article  CAS  Google Scholar 

  12. Kohn AD, Moon RT (2005) Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium 38:439–446

    Article  CAS  Google Scholar 

  13. Bel-Vialar S, Core N, Terranova R, Goudot V, Boned A, Djabali M (2000) Altered retinoic acid sensitivity and temporal expression of Hox genes in polycomb-M33-deficient mice. Dev Biol 224:238–249

    Article  CAS  Google Scholar 

  14. Bel-Vialar S, Itasaki N, Krumlauf R (2002) Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 129:5103–5115

    CAS  PubMed  Google Scholar 

  15. Ho NY, Yang L, Legradi J, Armant O, Takamiya M, Rastegar S, Strahle U (2013) Gene responses in the central nervous system of zebrafish embryos exposed to the neurotoxicant methyl mercury. Environ Sci Technol 47:3316–3325

    Article  CAS  Google Scholar 

  16. Hong M, Krauss RS (2017) Ethanol itself is a holoprosencephaly-inducing teratogen. PLoS One 12:e0176440

    Article  Google Scholar 

  17. Huyck RW, Nagarkar M, Olsen N, Clamons SE, Saha MS (2015) Methylmercury exposure during early Xenopus laevis development affects cell proliferation and death but not neural progenitor specification. Neurotoxicol Teratol 47:102–113

    Article  CAS  Google Scholar 

  18. Kot-Leibovich H, Fainsod A (2009) Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation. Dis Model Mech 2:295–305

    Article  CAS  Google Scholar 

  19. Lee LM, Leung CY, Tang WW, Choi HL, Leung YC, McCaffery PJ, Wang CC, Woolf AS, Shum AS (2012) A paradoxical teratogenic mechanism for retinoic acid. Proc Natl Acad Sci U S A 109:13668–13673

    Article  CAS  Google Scholar 

  20. Lee LM, Leung MB, Kwok RC, Leung YC, Wang CC, McCaffery PJ, Copp AJ, Shum AS (2017) Perturbation of retinoid homeostasis increases malformation risk in embryos exposed to pregestational diabetes. Diabetes 66:1041–1051

    Article  CAS  Google Scholar 

  21. Marshall H, Morrison A, Studer M, Popperl H, Krumlauf R (1996) Retinoids and Hox genes. FASEB J 10:969–978

    Article  CAS  Google Scholar 

  22. Soderstrom S, Ebendal T (1995) In vitro toxicity of methyl mercury: effects on nerve growth factor (NGF)-responsive neurons and on NGF synthesis in fibroblasts. Toxicol Lett 75:133–144

    Article  CAS  Google Scholar 

  23. Luehrsen KR, Davidson S, Lee YJ, Rouhani R, Soleimani A, Raich T, Cain CA, Collarini EJ, Yamanishi DT, Pearson J et al (2000) High-density hapten labeling and HRP conjugation of oligonucleotides for use as in situ hybridization probes to detect mRNA targets in cells and tissues. J Histochem Cytochem 48:133–145

    Article  CAS  Google Scholar 

  24. Nagy A, Gertenstein M, Vintersten K, Behringer R (2003) Manipulating the mouse embryo: a laboratory manual, 3rd edn. Cold Spring Harbor Press, New York

    Google Scholar 

  25. Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. 1951. Dev Dyn 195:231–272

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffery R. Barrow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barrow, J.R. (2019). Examining Gene Expression Patterns Through Whole-Mount In Situ Hybridization. In: Hansen, J., Winn, L. (eds) Developmental Toxicology. Methods in Molecular Biology, vol 1965. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9182-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9182-2_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9181-5

  • Online ISBN: 978-1-4939-9182-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics