Skip to main content

Flow Cytometric MRD Detection in Selected Mature B-Cell Malignancies

  • Protocol
  • First Online:
Lymphoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1956))

Abstract

The quantification of submicroscopic minimal residual disease (MRD) after therapy proved to have independent prognostic significance in many mature B-cell malignancies. With the advent of routine benchtop cytometers capable of simultaneously analyzing ≥4 colors and with improved standardization, flow cytometry has become the method of choice for MRD assessments in some lymphoma entities. Herein we describe general aspects of flow cytometric standardization. Chronic lymphocytic leukemia and multiple myeloma (MM) are used as examples to explain the technical standardization of flow cytometry for MRD detection according to EuroFlow strategies. MRD data acquisition and detailed analysis using a newly developed approach (so-called next generation flow, NGF) in MM is a particular focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer K, Bahlo J, Fink AM et al (2016) Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood 127:208–215

    Article  CAS  PubMed  Google Scholar 

  2. Hermine O, Hoster E, Walewski J et al (2016) Addition of high-dose cytarabine to immunochemotherapy before autologous stem-cell transplantation in patients aged 65 years or younger with mantle cell lymphoma (MCL Younger): a randomised, open-label, phase 3 trial of the European Mantle Cell Lymphoma Network. Lancet 388:565–575

    Article  CAS  PubMed  Google Scholar 

  3. European Medicines Agency Committee for Medicinal Products for Human Use (2016) Appendix 4 to the guideline on the evaluation of anticancer medicinal products in man. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/02/WC500201945.pdf, Accessed 15 Mar 2018

  4. Fink AM, Bottcher S, Ritgen M et al (2013) Prediction of poor outcome in CLL patients following first-line treatment with fludarabine, cyclophosphamide and rituximab. Leukemia 27:1949–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cramer P, von Tresckow J, Bahlo J et al (2018) CLL2-BXX Phase II trials: sequential, targeted treatment for eradication of minimal residual disease in chronic lymphocytic leukemia. Future Oncol (London, England) 14:499–513

    Article  CAS  Google Scholar 

  6. Bottcher S, Ritgen M, Buske S et al (2008) Minimal residual disease detection in mantle cell lymphoma: methods and significance of four-color flow cytometry compared to consensus IGH-polymerase chain reaction at initial staging and for follow-up examinations. Haematologica 93:551–559

    Article  PubMed  Google Scholar 

  7. Bottcher S, Ritgen M, Pott C et al (2004) Comparative analysis of minimal residual disease detection using four-color flow cytometry, consensus IgH-PCR, and quantitative IgH PCR in CLL after allogeneic and autologous stem cell transplantation. Leukemia 18:1637–1645

    Article  CAS  PubMed  Google Scholar 

  8. van der Velden VH, Cazzaniga G, Schrauder A et al (2007) Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 21:604–611

    Article  CAS  PubMed  Google Scholar 

  9. Puig N, Sarasquete ME, Balanzategui A et al (2014) Critical evaluation of ASO RQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry. Leukemia 28:391–397

    Article  CAS  PubMed  Google Scholar 

  10. Rawstron AC, Orfao A, Beksac M et al (2008) Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 93:431–438

    Article  PubMed  Google Scholar 

  11. Rawstron AC, Villamor N, Ritgen M et al (2007) International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia 21:956–964

    Article  CAS  PubMed  Google Scholar 

  12. Rawstron AC, de Tute R, Jack AS et al (2006) Flow cytometric protein expression profiling as a systematic approach for developing disease-specific assays: identification of a chronic lymphocytic leukaemia-specific assay for use in rituximab-containing regimens. Leukemia 20:2102–2110

    Article  CAS  PubMed  Google Scholar 

  13. Mateo G, Montalban MA, Vidriales MB et al (2008) Prognostic value of immunophenotyping in multiple myeloma: a study by the PETHEMA/GEM cooperative study groups on patients uniformly treated with high-dose therapy. J Clin Oncol 26:2737–2744

    Article  PubMed  Google Scholar 

  14. Bottcher S, Stilgenbauer S, Busch R et al (2009) Standardized MRD flow and ASO IGH RQ-PCR for MRD quantification in CLL patients after rituximab-containing immunochemotherapy: a comparative analysis. Leukemia 23:2007–2017

    Article  CAS  PubMed  Google Scholar 

  15. Paiva B, Cedena MT, Puig N et al (2016) Minimal residual disease monitoring and immune profiling in multiple myeloma in elderly patients. Blood 127:3165–3174

    Article  CAS  PubMed  Google Scholar 

  16. Rawstron AC, Fazi C, Agathangelidis A et al (2016) A complementary role of multiparameter flow cytometry and high-throughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia: an European Research Initiative on CLL study. Leukemia 30:929–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Flores-Montero J, Sanoja-Flores L, Paiva B et al (2017) Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia 31:2094–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goede V, Fischer K, Busch R et al (2014) Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med 370:1101–1110

    Article  CAS  PubMed  Google Scholar 

  19. Hallek M, Fischer K, Fingerle-Rowson G et al (2010) Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 376:1164–1174

    Article  CAS  PubMed  Google Scholar 

  20. Stilgenbauer S, Leblond V, Foa R et al (2018) Obinutuzumab plus bendamustine in previously untreated patients with CLL: a subgroup analysis of the GREEN study. Leukemia 32:1778–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roberts AW, Davids MS, Pagel JM et al (2016) Targeting BCL2 with Venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med 374:311–322

    Article  CAS  PubMed  Google Scholar 

  22. Seymour JF, Ma S, Brander DM et al (2017) Venetoclax plus rituximab in relapsed or refractory chronic lymphocytic leukaemia: a phase 1b study. Lancet Oncol 18:230–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stilgenbauer S, Eichhorst B, Schetelig J et al (2016) Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol 17:768–778

    Article  CAS  PubMed  Google Scholar 

  24. Byrd JC, Brown JR, O’Brien S et al (2014) Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med 371:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Furman RR, Sharman JP, Coutre SE et al (2014) Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 370:997–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ahn IE, Farooqui MZH, Tian X et al (2018) Depth and durability of response to ibrutinib in CLL: 5-year follow-up of a phase II study. Blood 131:2357–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burger JA, Tedeschi A, Barr PM et al (2015) Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med 373:2425–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fischer K, Al-Sawaf O, Fink AM et al (2017) Venetoclax and obinutuzumab in chronic lymphocytic leukemia. Blood 129:2702–2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moreno C, Villamor N, Colomer D et al (2006) Clinical significance of minimal residual disease, as assessed by different techniques, after stem cell transplantation for chronic lymphocytic leukemia. Blood 107:4563–4569

    Article  CAS  PubMed  Google Scholar 

  30. Bottcher S, Ritgen M, Fischer K et al (2012) Minimal residual disease quantification is an independent predictor of progression free and overall survival in chronic lymphocytic leukemia. A multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol 30:980–988

    Article  PubMed  Google Scholar 

  31. Fischer K, Cramer P, Busch R et al (2012) Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol 30:3209–3216

    Article  CAS  PubMed  Google Scholar 

  32. Pettitt AR, Jackson R, Carruthers S et al (2012) Alemtuzumab in combination with methylprednisolone is a highly effective induction regimen for patients with chronic lymphocytic leukemia and deletion of TP53: final results of the national cancer research institute CLL206 trial. J Clin Oncol 30:1647–1655

    Article  CAS  PubMed  Google Scholar 

  33. Bouvet E, Borel C, Oberic L et al (2013) Impact of dose intensity on outcome of fludarabine, cyclophosphamide, and rituximab regimen given in the first-line therapy for chronic lymphocytic leukemia. Haematologica 98:65–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Santacruz R, Villamor N, Aymerich M et al (2014) The prognostic impact of minimal residual disease in patients with chronic lymphocytic leukemia requiring first-line therapy. Haematologica 99:873–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Strati P, Keating MJ, O’Brien SM et al (2014) Eradication of bone marrow minimal residual disease may prompt early treatment discontinuation in CLL. Blood 123:3727–3732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ritgen M, Langerak A, Goede V et al (2016) Quantitative MRD is prognostic for progression free & overall survival in elderly patients receiving chlorambucil alone or with obinutuzumab/rituximab: a prospective analysis of the GCLLSG CLL11 study. Haematologica 101:149–150 [abstract]

    Article  CAS  Google Scholar 

  37. Howard DR, Munir T, McParland L et al (2017) Results of the randomized phase IIB ARCTIC trial of low-dose rituximab in previously untreated CLL. Leukemia 31:2416–2425

    Article  CAS  PubMed  Google Scholar 

  38. Kwok M, Rawstron AC, Varghese A et al (2016) Minimal residual disease is an independent predictor for 10-year survival in CLL. Blood 128:2770–2773

    Article  CAS  PubMed  Google Scholar 

  39. Munir T, Howard DR, McParland L et al (2017) Results of the randomized phase IIB ADMIRE trial of FCR with or without mitoxantrone in previously untreated CLL. Leukemia 31:2085–2093

    Article  CAS  PubMed  Google Scholar 

  40. Feugier P, Aurran T, Mahe B et al (2018) Long-term follow-up of the CLL2007FMP trial evaluating fludarabine and cyclophosphamide in combination with either rituximab or alemtuzumab in previously untreated patients with chronic lymphocytic leukemia. Haematologica 103:e304–e306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seymour JF, Kipps TJ, Eichhorst B et al (2018) Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med 378:1107–1120

    Article  CAS  PubMed  Google Scholar 

  42. Hallek M, Cheson BD, Catovsky D et al (2018) Guidelines for diagnosis, indications for treatment, response assessment and supportive management of chronic lymphocytic leukemia. Blood 131:2745–2760

    Article  CAS  PubMed  Google Scholar 

  43. Rawstron AC, Bottcher S, Letestu R et al (2013) Improving efficiency and sensitivity: European Research Initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL. Leukemia 27:142–149

    Article  CAS  PubMed  Google Scholar 

  44. Logan AC, Zhang B, Narasimhan B et al (2013) Minimal residual disease quantification using consensus primers and high-throughput IGH sequencing predicts post-transplant relapse in chronic lymphocytic leukemia. Leukemia 27:1659–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roussel M, Lauwers-Cances V, Robillard N et al (2014) Front-line transplantation program with lenalidomide, bortezomib, and dexamethasone combination as induction and consolidation followed by lenalidomide maintenance in patients with multiple myeloma: a phase II study by the Intergroupe Francophone du Myelome. J Clin Oncol 32:2712–2717

    Article  CAS  PubMed  Google Scholar 

  46. San Miguel JF, Schlag R, Khuageva NK et al (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359:906–917

    Article  CAS  PubMed  Google Scholar 

  47. Stewart AK, Rajkumar SV, Dimopoulos MA et al (2015) Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med 372:142–152

    Article  CAS  PubMed  Google Scholar 

  48. Moreau P, Masszi T, Grzasko N et al (2016) Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med 374:1621–1634

    Article  CAS  PubMed  Google Scholar 

  49. Dimopoulos MA, Oriol A, Nahi H et al (2016) Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med 375:1319–1331

    Article  CAS  PubMed  Google Scholar 

  50. Mateos MV, Dimopoulos MA, Cavo M et al (2018) Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N Engl J Med 378:518–528

    Article  CAS  PubMed  Google Scholar 

  51. Palumbo A, Chanan-Khan A, Weisel K et al (2016) Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med 375:754–766

    Article  CAS  PubMed  Google Scholar 

  52. Lonial S, Dimopoulos M, Palumbo A et al (2015) Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med 373:621–631

    Article  CAS  PubMed  Google Scholar 

  53. Chari A, Suvannasankha A, Fay JW et al (2017) Daratumumab plus pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. Blood 130:974–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. San Miguel J, Weisel K, Moreau P et al (2013) Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol 14:1055–1066

    Article  CAS  Google Scholar 

  55. Paiva B, Vidriales MB, Cervero J et al (2008) Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood 112:4017–4023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paiva B, Gutierrez NC, Rosinol L et al (2012) High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. Blood 119:687–691

    Article  CAS  PubMed  Google Scholar 

  57. Paiva B, Martinez-Lopez J, Vidriales MB et al (2011) Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. J Clin Oncol 29:1627–1633

    Article  CAS  PubMed  Google Scholar 

  58. Martinez-Lopez J, Lahuerta JJ, Pepin F et al (2014) Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood 123:3073–3079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rawstron AC, Child JA, de Tute RM et al (2013) Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J Clin Oncol 31:2540–2547

    Article  PubMed  Google Scholar 

  60. Lahuerta JJ, Paiva B, Vidriales MB et al (2017) Depth of response in multiple myeloma: a pooled analysis of three PETHEMA/GEM clinical trials. J Clin Oncol 35:2900–2910

    Article  CAS  PubMed  Google Scholar 

  61. Korde N, Roschewski M, Zingone A et al (2015) Treatment with carfilzomib-lenalidomide-dexamethasone with lenalidomide extension in patients with smoldering or newly diagnosed multiple myeloma. JAMA Oncol 1:746–754

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ferrero S, Ladetto M, Drandi D et al (2015) Long-term results of the GIMEMA VEL-03-096 trial in MM patients receiving VTD consolidation after ASCT: MRD kinetics’ impact on survival. Leukemia 29:689–695

    Article  CAS  PubMed  Google Scholar 

  63. Ladetto M, Pagliano G, Ferrero S et al (2010) Major tumor shrinking and persistent molecular remissions after consolidation with bortezomib, thalidomide, and dexamethasone in patients with autografted myeloma. J Clin Oncol 28:2077–2084

    Article  CAS  PubMed  Google Scholar 

  64. Ladetto M, Bruggemann M, Monitillo L et al (2014) Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia 28:1299–1307

    Article  CAS  PubMed  Google Scholar 

  65. Martinez-Lopez J, Paiva B, Lopez-Anglada L et al (2015) Critical analysis of the stringent complete response in multiple myeloma: contribution of sFLC and bone marrow clonality. Blood 126:858–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Arroz M, Came N, Lin P et al (2016) Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting. Cytometry B Clin Cytom 90:31–39

    Article  CAS  PubMed  Google Scholar 

  67. Kalina T, Flores-Montero J, van der Velden VH et al (2012) EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 26:1986–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. van Dongen JJ, Lhermitte L, Bottcher S et al (2012) EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 26:1908–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kumar S, Paiva B, Anderson KC et al (2016) International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol 17:e328–e346

    Article  PubMed  Google Scholar 

  70. Pott C, Hoster E, Delfau-Larue MH et al (2010) Molecular remission is an independent predictor of clinical outcome in patients with mantle cell lymphoma after combined immunochemotherapy: a European MCL intergroup study. Blood 115:3215–3223

    Article  CAS  PubMed  Google Scholar 

  71. Pott C, Schrader C, Gesk S et al (2006) Quantitative assessment of molecular remission after high-dose therapy with autologous stem cell transplantation predicts long-term remission in mantle cell lymphoma. Blood 107:2271–2278

    Article  CAS  PubMed  Google Scholar 

  72. Kolstad A, Laurell A, Jerkeman M et al (2014) Nordic MCL3 study: 90Y-ibritumomab-tiuxetan added to BEAM/C in non-CR patients before transplant in mantle cell lymphoma. Blood 123:2953–2959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kolstad A, Pedersen LB, Eskelund CW et al (2017) Molecular monitoring after autologous stem cell transplantation and preemptive rituximab treatment of molecular relapse; results from the nordic mantle cell lymphoma studies (MCL2 and MCL3) with median follow-up of 8.5 years. Biol Blood Marrow Transplant 23:428–435

    Article  CAS  PubMed  Google Scholar 

  74. Armand P, Redd R, Bsat J et al (2016) A phase 2 study of Rituximab-Bendamustine and Rituximab-Cytarabine for transplant-eligible patients with mantle cell lymphoma. Br J Haematol 173:89–95

    Article  CAS  PubMed  Google Scholar 

  75. Cheminant M, Derrieux C, Touzart A et al (2016) Minimal residual disease monitoring by 8-color flow cytometry in mantle cell lymphoma: an EU-MCL and LYSA study. Haematologica 101:336–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tam CS, Anderson MA, Pott C et al (2018) Ibrutinib plus venetoclax for the treatment of mantle-cell lymphoma. N Engl J Med 378:1211–1223

    Article  CAS  PubMed  Google Scholar 

  77. Ladetto M, Lobetti-Bodoni C, Mantoan B et al (2013) Persistence of minimal residual disease in bone marrow predicts outcome in follicular lymphomas treated with a rituximab-intensive program. Blood 122:3759–3766

    Article  CAS  PubMed  Google Scholar 

  78. Ladetto M, De Marco F, Benedetti F et al (2008) Prospective, multicenter randomized GITMO/IIL trial comparing intensive (R-HDS) versus conventional (CHOP-R) chemoimmunotherapy in high-risk follicular lymphoma at diagnosis: the superior disease control of R-HDS does not translate into an overall survival advantage. Blood 111:4004–4013

    Article  CAS  PubMed  Google Scholar 

  79. Galimberti S, Luminari S, Ciabatti E et al (2014) Minimal residual disease after conventional treatment significantly impacts on progression-free survival of patients with follicular lymphoma: the FIL FOLL05 trial. Clin Cancer Res 20:6398–6405

    Article  CAS  PubMed  Google Scholar 

  80. Zohren F, Bruns I, Pechtel S et al (2015) Prognostic value of circulating Bcl-2/IgH levels in patients with follicular lymphoma receiving first-line immunochemotherapy. Blood 126:1407–1414

    Article  CAS  PubMed  Google Scholar 

  81. van Oers MH, Tonnissen E, Van Glabbeke M et al (2010) BCL-2/IgH polymerase chain reaction status at the end of induction treatment is not predictive for progression-free survival in relapsed/resistant follicular lymphoma: results of a prospective randomized EORTC 20981 phase III intergroup study. J Clin Oncol 28:2246–2252

    Article  CAS  PubMed  Google Scholar 

  82. Kalina T, Flores-Montero J, Lecrevisse Q et al (2015) Quality assessment program for EuroFlow protocols: summary results of four-year (2010–2013) quality assurance rounds. Cytometry A 87:145–156

    Article  PubMed  Google Scholar 

  83. Böttcher S (2019) Minimal residual disease quantification in chronic lymphocytic leukemia: clinical significance and flow cytometric methods. Methods Mol Biol 1881:211–238. https://doi.org/10.1007/978-1-4939-8876-1_17

  84. Böttcher S, van der Velden VHJ, Villamor N, Ritgen M, Flores-Montero J, Murua Escobar H, Kalina T, Brﺲggemann M, Grigore G, Martin-Ayuso M, Lecrevisse Q, Pedreira CE, van Dongen JJM, Orfao A (2017) Lot-to-lot stability of antibody reagents for flow cytometry. J Immunol Methods. pii: S0022-1759(17)30075-3. https://doi.org/10.1016/j.jim.2017.03.018. [Epub ahead of print]

  85. Bomberger C, Singh-Jairam M, Rodey G et al (1998) Lymphoid reconstitution after autologous PBSC transplantation with FACS-sorted CD34+ hematopoietic progenitors. Blood 91:2588–2600

    CAS  PubMed  Google Scholar 

  86. Flores-Montero J, de Tute R, Paiva B et al (2016) Immunophenotype of normal vs. myeloma plasma cells: toward antibody panel specifications for MRD detection in multiple myeloma. Cytometry B Clin Cytom 90:61–72

    Article  CAS  PubMed  Google Scholar 

  87. Bottcher S, Ritgen M, Kneba M (2013) Flow cytometric MRD detection in selected mature B-cell malignancies. Methods Mol Biol 971:149–174. https://doi.org/10.1007/978-1-62703-269-8_9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is grateful to E. Harbst, L. Falck, J. Hanani, D. Paape, B. Wiebeck, S. Lange, E. Koppitz, and L. Henseleit for excellent technical support with establishing the protocols and thanks the members of the EuroFlow and ERIC consortiums for long-standing collaborations. B. Wiebeck, S. Lange, PhD, R. Engelmann, PhD, and D. Paape are acknowledged for critical reading of the manuscript. Parts of this manuscript are based on a previously published chapter in Methods in Molecular Biology by the author, Matthias Ritgen, and Michael Kneba [87].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Böttcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Böttcher, S. (2019). Flow Cytometric MRD Detection in Selected Mature B-Cell Malignancies. In: Küppers, R. (eds) Lymphoma. Methods in Molecular Biology, vol 1956. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9151-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9151-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9150-1

  • Online ISBN: 978-1-4939-9151-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics