Skip to main content

Intraspinal and Intracortical Delivery of AAV Vectors for Intersectional Circuit Tracing in Non-transgenic Species

  • Protocol
  • First Online:
Adeno-Associated Virus Vectors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1950))

Abstract

The mapping of long-range axonal projections is a rapidly growing endeavor in the field of neuroscience. Recent advances in the development of adeno-associated viral vectors that can achieve efficient retrograde transport now enable the characterization and manipulation of specific neuronal subpopulations using Cre-dependent, intersectional approaches. Importantly, these approaches can be applied to non-transgenic animals, making it possible to carry out detailed anatomical studies across a variety of species including nonhuman primates. In this chapter, we demonstrate the utility of such intersectional strategies by describing methods for targeting viral constructs to distinct subsets of corticospinal motor neurons based on their projections to specific spinal cord segments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris JA, Hirokawa KE, Sorensen SA, Gu H, Mills M, Ng LL, Bohn P, Mortrud M, Ouellette B, Kidney J, Smith KA, Dang C, Sunkin S, Bernard A, Oh SW, Madisen L, Zeng H (2014) Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front Neural Circuits 8:76. https://doi.org/10.3389/fncir.2014.00076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268. https://doi.org/10.1038/nn1525

    Article  CAS  PubMed  Google Scholar 

  3. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71(1):9–34. https://doi.org/10.1016/j.neuron.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  4. Han X, Chow BY, Zhou H, Klapoetke NC, Chuong A, Rajimehr R, Yang A, Baratta MV, Winkle J, Desimone R, Boyden ES (2011) A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 5:18. https://doi.org/10.3389/fnsys.2011.00018

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463(7277):98–102. https://doi.org/10.1038/nature08652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2(3):e299. https://doi.org/10.1371/journal.pone.0000299

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sternson SM, Roth BL (2014) Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci 37:387–407. https://doi.org/10.1146/annurev-neuro-071013-014048

    Article  CAS  PubMed  Google Scholar 

  8. Roth BL (2016) DREADDs for neuroscientists. Neuron 89(4):683–694. https://doi.org/10.1016/j.neuron.2016.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu H, Roth BL (2014) Silencing synapses with DREADDs. Neuron 82(4):723–725. https://doi.org/10.1016/j.neuron.2014.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Akerboom J, Carreras Calderon N, Tian L, Wabnig S, Prigge M, Tolo J, Gordus A, Orger MB, Severi KE, Macklin JJ, Patel R, Pulver SR, Wardill TJ, Fischer E, Schuler C, Chen TW, Sarkisyan KS, Marvin JS, Bargmann CI, Kim DS, Kugler S, Lagnado L, Hegemann P, Gottschalk A, Schreiter ER, Looger LL (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2. https://doi.org/10.3389/fnmol.2013.00002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tian L, Hires SA, Looger LL (2012) Imaging neuronal activity with genetically encoded calcium indicators. Cold Spring Harb Protoc 2012(6):647–656. https://doi.org/10.1101/pdb.top069609

    Article  PubMed  Google Scholar 

  12. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6(12):875–881. https://doi.org/10.1038/nmeth.1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gore BB, Soden ME, Zweifel LS (2013) Manipulating gene expression in projection-specific neuronal populations using combinatorial viral approaches. Curr Protoc Neurosci 65:4.35.1–4.3520. https://doi.org/10.1002/0471142301.ns0435s65

    Article  Google Scholar 

  14. Boender AJ, de Jong JW, Boekhoudt L, Luijendijk MC, van der Plasse G, Adan RA (2014) Combined use of the canine adenovirus-2 and DREADD-technology to activate specific neural pathways in vivo. PLoS One 9(4):e95392. https://doi.org/10.1371/journal.pone.0095392

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hnasko TS, Perez FA, Scouras AD, Stoll EA, Gale SD, Luquet S, Phillips PE, Kremer EJ, Palmiter RD (2006) Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia. Proc Natl Acad Sci U S A 103(23):8858–8863. https://doi.org/10.1073/pnas.0603081103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hung LW, Neuner S, Polepalli JS, Beier KT, Wright M, Walsh JJ, Lewis EM, Luo L, Deisseroth K, Dolen G, Malenka RC (2017) Gating of social reward by oxytocin in the ventral tegmental area. Science 357(6358):1406–1411. https://doi.org/10.1126/science.aan4994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schwarz LA, Miyamichi K, Gao XJ, Beier KT, Weissbourd B, DeLoach KE, Ren J, Ibanes S, Malenka RC, Kremer EJ, Luo L (2015) Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature 524(7563):88–92. https://doi.org/10.1038/nature14600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yackle K, Schwarz LA, Kam K, Sorokin JM, Huguenard JR, Feldman JL, Luo L, Krasnow MA (2017) Breathing control center neurons that promote arousal in mice. Science 355(6332):1411–1415. https://doi.org/10.1126/science.aai7984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaspar BK, Erickson D, Schaffer D, Hinh L, Gage FH, Peterson DA (2002) Targeted retrograde gene delivery for neuronal protection. Mol Ther 5(1):50–56. https://doi.org/10.1006/mthe.2001.0520

    Article  CAS  PubMed  Google Scholar 

  20. Hollis ER 2nd, Kadoya K, Hirsch M, Samulski RJ, Tuszynski MH (2008) Efficient retrograde neuronal transduction utilizing self-complementary AAV1. Mol Ther 16(2):296–301. https://doi.org/10.1038/sj.mt.6300367

    Article  CAS  PubMed  Google Scholar 

  21. Castle MJ, Gershenson ZT, Giles AR, Holzbaur EL, Wolfe JH (2014) Adeno-associated virus serotypes 1, 8, and 9 share conserved mechanisms for anterograde and retrograde axonal transport. Hum Gene Ther 25(8):705–720. https://doi.org/10.1089/hum.2013.189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH (2003) Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301(5634):839–842. https://doi.org/10.1126/science.1086137

    Article  CAS  PubMed  Google Scholar 

  23. Rothermel M, Brunert D, Zabawa C, Diaz-Quesada M, Wachowiak M (2013) Transgene expression in target-defined neuron populations mediated by retrograde infection with adeno-associated viral vectors. J Neurosci 33(38):15195–15206. https://doi.org/10.1523/JNEUROSCI.1618-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tervo DG, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S, Kuleshova E, Ojala D, Huang CC, Gerfen CR, Schiller J, Dudman JT, Hantman AW, Looger LL, Schaffer DV, Karpova AY (2016) A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92(2):372–382. https://doi.org/10.1016/j.neuron.2016.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chabrat A, Brisson G, Doucet-Beaupre H, Salesse C, Schaan Profes M, Dovonou A, Akitegetse C, Charest J, Lemstra S, Cote D, Pasterkamp RJ, Abrudan MI, Metzakopian E, Ang SL, Levesque M (2017) Transcriptional repression of Plxnc1 by Lmx1a and Lmx1b directs topographic dopaminergic circuit formation. Nat Commun 8(1):933. https://doi.org/10.1038/s41467-017-01042-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Danielson NB, Turi GF, Ladow M, Chavlis S, Petrantonakis PC, Poirazi P, Losonczy A (2017) In Vivo Imaging of Dentate Gyrus Mossy Cells in Behaving Mice. Neuron 93(3):552–559 e554. https://doi.org/10.1016/j.neuron.2016.12.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ciabatti E, Gonzalez-Rueda A, Mariotti L, Morgese F, Tripodi M (2017) Life-long genetic and functional access to neural circuits using self-inactivating rabies virus. Cell 170(2):382–392 e314. https://doi.org/10.1016/j.cell.2017.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wagner MJ, Kim TH, Savall J, Schnitzer MJ, Luo L (2017) Cerebellar granule cells encode the expectation of reward. Nature 544(7648):96–100. https://doi.org/10.1038/nature21726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang GW, Sun WJ, Zingg B, Shen L, He J, Xiong Y, Tao HW, Zhang LI (2018) A non-canonical reticular-limbic central auditory pathway via medial septum contributes to fear conditioning. Neuron 97(2):406–417 e404. https://doi.org/10.1016/j.neuron.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  30. Hashimoto M, Yamanaka A, Kato S, Tanifuji M, Kobayashi K, Yaginuma H (2018) Anatomical evidence for a direct projection from purkinje cells in the mouse cerebellar vermis to medial parabrachial nucleus. Front Neural Circuits 12:6. https://doi.org/10.3389/fncir.2018.00006

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li XG, Florence SL, Kaas JH (1990) Areal distributions of cortical neurons projecting to different levels of the caudal brain stem and spinal cord in rats. Somatosens Mot Res 7(3):315–335

    Article  CAS  PubMed  Google Scholar 

  32. Wang L, Conner JM, Rickert J, Tuszynski MH (2011) Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain. Proc Natl Acad Sci U S A 108(6):2545–2550. https://doi.org/10.1073/pnas.1014335108

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dulin JN, Adler AF, Kumamaru H, Poplawski GHD, Lee-Kubli C, Strobl H, Gibbs D, Kadoya K, Fawcett JW, Lu P, Tuszynski MH (2018) Injured adult motor and sensory axons regenerate into appropriate organotypic domains of neural progenitor grafts. Nat Commun 9(1):84. https://doi.org/10.1038/s41467-017-02613-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Soderblom C, Lee DH, Dawood A, Carballosa M, Jimena Santamaria A, Benavides FD, Jergova S, Grumbles RM, Thomas CK, Park KK, Guest JD, Lemmon VP, Lee JK, Tsoulfas P (2015) 3D imaging of axons in transparent spinal cords from rodents and nonhuman primates. eNeuro 2(2). https://doi.org/10.1523/ENEURO.0001-15.2015

  35. Blackmore MG, Wang Z, Lerch JK, Motti D, Zhang YP, Shields CB, Lee JK, Goldberg JL, Lemmon VP, Bixby JL (2012) Krüppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract. Proc Natl Acad Sci U S A 109(19):7517–7522. https://doi.org/10.1073/pnas.1120684109

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang Z, Reynolds A, Kirry A, Nienhaus C, Blackmore MG (2015) Overexpression of sox11 promotes corticospinal tract regeneration after spinal injury while interfering with functional recovery. J Neurosci 35(7):3139–3145. https://doi.org/10.1523/JNEUROSCI.2832-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jayaprakash N, Wang Z, Hoeynck B, Krueger N, Kramer A, Balle E, Wheeler DS, Wheeler RA, Blackmore MG (2016) Optogenetic interrogation of functional synapse formation by corticospinal tract axons in the injured spinal cord. J Neurosci 36(21):5877–5890. https://doi.org/10.1523/JNEUROSCI.4203-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hollis ER 2nd, Ishiko N, Yu T, Lu CC, Haimovich A, Tolentino K, Richman A, Tury A, Wang SH, Pessian M, Jo E, Kolodkin A, Zou Y (2016) Ryk controls remapping of motor cortex during functional recovery after spinal cord injury. Nat Neurosci 19(5):697–705. https://doi.org/10.1038/nn.4282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang X, Liu Y, Li X, Zhang Z, Yang H, Zhang Y, Williams PR, Alwahab NSA, Kapur K, Yu B, Zhang Y, Chen M, Ding H, Gerfen CR, Wang KH, He Z (2017) Deconstruction of corticospinal circuits for goal-directed motor skills. Cell 171(2):440–455 e414. https://doi.org/10.1016/j.cell.2017.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Y, Keefe K, Tang X, Lin S, Smith GM (2014) Use of self-complementary adeno-associated virus serotype 2 as a tracer for labeling axons: implications for axon regeneration. PLoS One 9(2):e87447. https://doi.org/10.1371/journal.pone.0087447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jara JH, Stanford MJ, Zhu Y, Tu M, Hauswirth WW, Bohn MC, DeVries SH, Ozdinler PH (2016) Healthy and diseased corticospinal motor neurons are selectively transduced upon direct AAV2-2 injection into the motor cortex. Gene Ther 23(3):272–282. https://doi.org/10.1038/gt.2015.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hollis ER 2nd, Jamshidi P, Löw K, Blesch A, Tuszynski MH (2009) Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc Natl Acad Sci U S A 106(17):7215–7220. https://doi.org/10.1073/pnas.0810624106

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lee DH, Luo X, Yungher BJ, Bray E, Lee JK, Park KK (2014) Mammalian target of rapamycin’s distinct roles and effectiveness in promoting compensatory axonal sprouting in the injured CNS. J Neurosci 34(46):15347–15355. https://doi.org/10.1523/JNEUROSCI.1935-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Geoffroy CG, Hilton BJ, Tetzlaff W, Zheng B (2016) Evidence for an age-dependent decline in axon regeneration in the adult mammalian central nervous system. Cell Rep 15(2):238–246. https://doi.org/10.1016/j.celrep.2016.03.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hilton BJ, Anenberg E, Harrison TC, Boyd JD, Murphy TH, Tetzlaff W (2016) Re-establishment of cortical motor output maps and spontaneous functional recovery via spared dorsolaterally projecting corticospinal neurons after dorsal column spinal cord injury in adult mice. J Neurosci 36(14):4080–4092. https://doi.org/10.1523/JNEUROSCI.3386-15.2016

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gruntman AM, Su L, Su Q, Gao G, Mueller C, Flotte TR (2015) Stability and compatibility of recombinant adeno-associated virus under conditions commonly encountered in human gene therapy trials. Hum Gene Ther Methods 26(2):71–76. https://doi.org/10.1089/hgtb.2015.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Craig H. Neilsen Foundation, Paralyzed Veterans of America Research Foundation, and TIRR Foundation (J.N.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer N. Dulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Conner, J.M., Bain, G.L., Dulin, J.N. (2019). Intraspinal and Intracortical Delivery of AAV Vectors for Intersectional Circuit Tracing in Non-transgenic Species. In: Castle, M. (eds) Adeno-Associated Virus Vectors. Methods in Molecular Biology, vol 1950. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9139-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9139-6_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9138-9

  • Online ISBN: 978-1-4939-9139-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics