Skip to main content

Pseudomonas, Stenotrophomonas, Acinetobacter, and Other Nonfermentative Gram-Negative Bacteria and Medically Important Anaerobic Bacteria in Transplant Recipients

  • Chapter
  • First Online:
Principles and Practice of Transplant Infectious Diseases

Abstract

Despite the overall decline in the frequency of documented gram-negative infections in transplant recipients receiving antimicrobial prophylaxis, the proportion of these infections caused by nonfermentative gram-negative bacilli (NFGNB) is increasing. Pseudomonas aeruginosa is the most common species of NFGNB isolated from such patients, from both monomicrobial and polymicrobial infections. The spectrum of infection caused by P. aeruginosa is wide, and involvement of multiple organ systems is not uncommon. Resistance to multiple agents expected to have activity against P. aeruginosa has become a significant problem and, to some extent, has spurred the development of novel antimicrobial agents. Other important NFGNB include Stenotrophomonas maltophilia, Acinetobacter species, and, to a lesser extent, Achromobacter species, Alcaligenes species, nonaeruginosa Pseudomonas species, and Chryseobacterium species. As with P. aeruginosa, resistance to multiple agents is a common thread with these organisms as well. Infections with these organisms are associated with substantial morbidity and mortality. Consequently, in addition to appropriate antimicrobial therapy, infection control and antimicrobial stewardship are important tools in combating the development and spread of infections caused by NFGNB. Anaerobic organisms, on the other hand, are isolated much less frequently, generally from mixed or polymicrobial infections. Although they are frequently co-pathogens in this setting, their importance should not be underestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wisplinghoff H, Seifert H, Wenzel RP, et al. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin Infect Dis. 2003;36:1103–10.

    Article  PubMed  Google Scholar 

  2. Yadegarynia D, Tarrand J, Raad I, Rolston K. Current spectrum of bacterial infections in patients with cancer. Clin Infect Dis. 2003;37:1144–5.

    Article  CAS  PubMed  Google Scholar 

  3. Rolston KV, Bodey GP, Safdar A. Polymicrobial infection in patients with cancer: an underappreciated and underreported entity. Clin Infect Dis. 2007;45:228–33.

    Article  PubMed  Google Scholar 

  4. Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2011;52:427–31.

    Article  PubMed  Google Scholar 

  5. Rangaraj G, Granwehr BP, Jiang Y, et al. Perils of quinolone exposure in cancer patients: breakthrough bacteremia with multidrug-resistant organisms. Cancer. 2010;116:967–73.

    Article  PubMed  Google Scholar 

  6. Cattaneo C, Quaresmini G, Casari S, et al. Recent changes in bacterial epidemiology and the emergence of fluoroquinolone-resistant Escherichia coli among patients with haematological malignancies: results of a prospective study on 823 patients at a single institution. J Antimicrob Chemother. 2008;61:721–8.

    Article  CAS  PubMed  Google Scholar 

  7. Mihu CN, Rhomberg PR, Jones RN, et al. Escherichia coli resistance to quinolones at a comprehensive cancer center. Diagn Microbiol Infect Dis. 2010;67:266–9.

    Article  CAS  PubMed  Google Scholar 

  8. Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: no ESKAPE! An update from Infectious Diseases Society of America. Clin Infect Dis. 2009;48:1–12.

    Article  PubMed  Google Scholar 

  9. Talbot GH, Bradley J, Edwards JE Jr, et al. Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin Infect Dis. 2006;42:657–68.

    Article  PubMed  Google Scholar 

  10. Klastersky J, Ameye L, Maertens J, et al. Bacteraemia in febrile neutropenic cancer patients. Int J Antimicrob Agents. 2007;30(Suppl 1):S51–9.

    Article  CAS  PubMed  Google Scholar 

  11. Mikulska M, Del Bono V, Bruzzi P, et al. Mortality after bloodstream infections in allogeneic haematopoietic stem cell transplant (HSCT) recipients. Infection. 2012;40:271–8.

    Article  CAS  PubMed  Google Scholar 

  12. Oliveira AL, de Souza M, Carvalho-Dias VM, et al. Epidemiology of bacteremia and factors associated with multi-drug-resistant gram-negative bacteremia in hematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2007;39:775–81.

    Article  CAS  PubMed  Google Scholar 

  13. Zinner SH. Changing epidemiology of infections in patients with neutropenia and cancer: emphasis on gram-positive and resistant bacteria. Clin Infect Dis. 1999;29:490–4.

    Article  CAS  PubMed  Google Scholar 

  14. Elting LS, Bodey GP, Fainstein V. Polymicrobial septicemia in the cancer patient. Medicine (Baltimore). 1986;65:218–25.

    Article  CAS  Google Scholar 

  15. Rolston KV, Tarrand JJ. Pseudomonas aeruginosa --still a frequent pathogen in patients with cancer: 11-year experience at a comprehensive cancer center. Clin Infect Dis. 1999;29:463–4.

    Article  CAS  PubMed  Google Scholar 

  16. Safdar A, Rodriguez GH, De Lima MJ, et al. Infections in 100 cord blood transplantations: spectrum of early and late posttransplant infections in adult and pediatric patients 1996-2005. Medicine (Baltimore). 2007;86:324–33.

    Article  Google Scholar 

  17. Rolston KV, Kontoyiannis DP, Yadegarynia D, et al. Nonfermentative gram-negative bacilli in cancer patients: increasing frequency of infection and antimicrobial susceptibility of clinical isolates to fluoroquinolones. Diagn Microbiol Infect Dis. 2005;51:215–8.

    Article  CAS  PubMed  Google Scholar 

  18. Martino R, Martinez C, Pericas R, et al. Bacteremia due to glucose non-fermenting gram-negative bacilli in patients with hematological neoplasias and solid tumors. Eur J Clin Microbiol Infect Dis. 1996;15:610–5.

    Article  CAS  PubMed  Google Scholar 

  19. Bodey GP, Ho DH, Elting L. Survey of antibiotic susceptibility among gram-negative bacilli at a cancer hospital. Am J Med. 1988;85:49–51.

    Article  CAS  PubMed  Google Scholar 

  20. Rolston KV, Elting L, Waguespack S, et al. Survey of antibiotic susceptibility among gram-negative bacilli at a cancer center. Chemotherapy. 1996;42:348–53.

    Article  CAS  PubMed  Google Scholar 

  21. Jacobson K, Rolston K, Elting L, et al. Susceptibility surveillance among gram-negative bacilli at a cancer center. Chemotherapy. 1999;45:325–34.

    Article  CAS  PubMed  Google Scholar 

  22. Rolston KKD, Raad I, LeBlanc BJ, et al. Susceptibility surveillance among gram-negative bacilli at a comprehensive cancer center [A-004]. In: Program and abstracts of the 103rd general meeting of American Society of Microbiology. Washington, DC: American Society of Microbiology; 2003.

    Google Scholar 

  23. Anaissie E, Fainstein V, Miller P, et al. Pseudomonas putida. Newly recognized pathogen in patients with cancer. Am J Med. 1987;82:1191–4.

    Article  CAS  PubMed  Google Scholar 

  24. Sanyal SC, Mokaddas EM. The increase in carbapenem use and emergence of Stenotrophomonas maltophilia as an important nosocomial pathogen. J Chemother. 1999;11:28–33.

    Article  CAS  PubMed  Google Scholar 

  25. Aisenberg G, Rolston KV, Dickey BF, et al. Stenotrophomonas maltophilia pneumonia in cancer patients without traditional risk factors for infection, 1997-2004. Eur J Clin Microbiol Infect Dis. 2007;26:13–20.

    Article  CAS  PubMed  Google Scholar 

  26. Chatzinikolaou I, Abi-Said D, Bodey GP, et al. Recent experience with Pseudomonas aeruginosa bacteremia in patients with cancer: retrospective analysis of 245 episodes. Arch Intern Med. 2000;160:501–9.

    Article  CAS  PubMed  Google Scholar 

  27. Mermel LA, Allon M, Bouza E, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;49:1–45.

    Article  CAS  PubMed  Google Scholar 

  28. Safdar A. Feasibility of aerosolized colistin in the era of escalating drug-resistant Pseudomonas pneumonia: pressing need for validation clinical trials. Intensive Care Med. 2010;36:1110–1.

    Article  PubMed  Google Scholar 

  29. Barnes SG, Sattler FR, Ballard JO. Perirectal infections in acute leukemia. Improved survival after incision and debridement. Ann Intern Med. 1984;100:515–8.

    Article  CAS  PubMed  Google Scholar 

  30. Aboufaycal H, Sader HS, Rolston K, et al. blaVIM-2 and blaVIM-7 carbapenemase-producing Pseudomonas aeruginosa isolates detected in a tertiary care medical center in the United States: report from the MYSTIC program. J Clin Microbiol. 2007;45:614–5.

    Article  CAS  PubMed  Google Scholar 

  31. Toleman MA, Rolston K, Jones RN, et al. blaVIM-7, an evolutionarily distinct metallo-beta-lactamase gene in a Pseudomonas aeruginosa isolate from the United States. Antimicrob Agents Chemother. 2004;48:329–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohmagari N, Hanna H, Graviss L, et al. Risk factors for infections with multidrug-resistant Pseudomonas aeruginosa in patients with cancer. Cancer. 2005;104:205–12.

    Article  PubMed  Google Scholar 

  33. Tverdek FP, Rolston KV, Chemaly RF. Antimicrobial stewardship in patients with cancer. Pharmacotherapy. 2012;32:722–34.

    Article  Google Scholar 

  34. Safdar A, Rolston KV. Stenotrophomonas maltophilia: changing spectrum of a serious bacterial pathogen in patients with cancer. Clin Infect Dis. 2007;45:1602–9.

    Article  PubMed  Google Scholar 

  35. Safdar A, Rodriguez GH, Balakrishnan M, et al. Changing trends in etiology of bacteremia in patients with cancer. Eur J Clin Microbiol Infect Dis. 2006;25:522–6.

    Article  CAS  PubMed  Google Scholar 

  36. Micozzi A, Venditti M, Monaco M, et al. Bacteremia due to Stenotrophomonas maltophilia in patients with hematologic malignancies. Clin Infect Dis. 2000;31:705–11.

    Article  CAS  PubMed  Google Scholar 

  37. Vartivarian SE, Papadakis KA, Anaissie EJ. Stenotrophomonas (Xanthomonas) maltophilia urinary tract infection. A disease that is usually severe and complicated. Arch Intern Med. 1996;156:433–5.

    Article  CAS  PubMed  Google Scholar 

  38. Papadakis KA, Vartivarian SE, Vassilaki ME, et al. Stenotrophomonas maltophilia meningitis. Report of two cases and review of the literature. J Neurosurg. 1997;87:106–8.

    Article  CAS  PubMed  Google Scholar 

  39. Araoka H, Fujii T, Izutsu K, et al. Rapidly progressive fatal hemorrhagic pneumonia caused by Stenotrophomonas maltophilia in hematologic malignancy. Transpl Infect Dis. 2012;14:355–63.

    Article  CAS  PubMed  Google Scholar 

  40. Tada K, Kurosawa S, Hiramoto N, et al. Stenotrophomonas maltophilia infection in hematopoietic SCT recipients: high mortality due to pulmonary hemorrhage. Bone Marrow Transplant. 2013;48:74–9.

    Article  CAS  PubMed  Google Scholar 

  41. Apisarnthanarak A, Fraser VJ, Dunne WM, et al. Stenotrophomonas maltophilia intestinal colonization in hospitalized oncology patients with diarrhea. Clin Infect Dis. 2003;37:1131–5.

    Article  PubMed  Google Scholar 

  42. Vartivarian S, Anaissie E, Bodey G, et al. A changing pattern of susceptibility of Xanthomonas maltophilia to antimicrobial agents: implications for therapy. Antimicrob Agents Chemother. 1994;38:624–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krueger TS, Clark EA, Nix DE. In vitro susceptibility of Stenotrophomonas maltophilia to various antimicrobial combinations. Diagn Microbiol Infect Dis. 2001;41:71–8.

    Article  CAS  PubMed  Google Scholar 

  44. Lecso-Bornet M, Pierre J, Sarkis-Karam D, et al. Susceptibility of Xanthomonas maltophilia to six quinolones and study of outer membrane proteins in resistant mutants selected in vitro. Antimicrob Agents Chemother. 1992;36:669–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Noskin GA. Tigecycline: a new glycylcycline for treatment of serious infections. Clin Infect Dis. 2005.;41Suppl 5;41:S303–14.

    Article  CAS  PubMed  Google Scholar 

  46. Rolston K, Guan Z, Bodey GP, et al. Acinetobacter calcoaceticus septicemia in patients with cancer. South Med J. 1985;78(6):647–51.

    Article  CAS  PubMed  Google Scholar 

  47. Chen CY, Tsay W, Tang JL, et al. Epidemiology of bloodstream infections in patients with haematological malignancies with and without neutropenia. Epidemiol Infect. 2010;138:1044–51.

    Article  PubMed  Google Scholar 

  48. Wisplinghoff H, Paulus T, Lugenheim M, et al. Nosocomial bloodstream infections due to Acinetobacter baumannii, Acinetobacter pittii and Acinetobacter nosocomialis in the United States. J Infect. 2012;64:282–90.

    Article  PubMed  Google Scholar 

  49. Velasco E, Byington R, Martins CA, et al. Comparative study of clinical characteristics of neutropenic and non-neutropenic adult cancer patients with bloodstream infections. Eur J Clin Microbiol Infect Dis. 2006;25:1–7.

    Article  CAS  PubMed  Google Scholar 

  50. Ashour HM, El-Sharif A. Species distribution and antimicrobial susceptibility of gram-negative aerobic bacteria in hospitalized cancer patients. J Transl Med. 2009;7:14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Segal SC, Zaoutis TE, Kagen J, et al. Epidemiology of and risk factors for Acinetobacter species bloodstream infection in children. Pediatr Infect Dis J. 2007;26:920–6.

    Article  PubMed  Google Scholar 

  52. Gales AC, Jones RN, Forward KR, et al. Emerging importance of multidrug-resistant Acinetobacter species and Stenotrophomonas maltophilia as pathogens in seriously ill patients: geographic patterns, epidemiological features, and trends in the SENTRY Antimicrobial Surveillance Program (1997-1999). Clin Infect Dis. 2001;32(Suppl 2):S104–13.

    Article  CAS  PubMed  Google Scholar 

  53. Cayô R, Yañez San Segundo L, Pérez del Molino Bernal IC, et al. Bloodstream infection caused by Acinetobacter junii in a patient with acute lymphoblastic leukaemia after allogenic haematopoietic cell transplantation. J Med Microbiol. 2011;60:375–7.

    Article  PubMed  Google Scholar 

  54. Turkoglu M, Mirza E, Tunçcan OG, et al. Acinetobacter baumannii infection in patients with hematologic malignancies in intensive care unit: risk factors and impact on mortality. J Crit Care. 2011;26:460–7.

    Article  PubMed  Google Scholar 

  55. Turkoglu M, Dizbay M. Multidrug-resistant Acinetobacter baumannii infection is not an independent risk factor for mortality in critically ill patients with hematologic malignancy. J Crit Care. 2011;26:526–7.

    Article  PubMed  Google Scholar 

  56. Queenan AM, Pillar CM, Deane J, et al. Multidrug resistance among Acinetobacter spp. in the USA and activity profile of key agents: results from CAPITAL Surveillance 2010. Diagn Microbiol Infect Dis. 2012;73:267–70.

    Article  CAS  PubMed  Google Scholar 

  57. Nørskov-Lauritsen N, Marchandin H, Dowzicky MJ. Antimicrobial susceptibility of tigecycline and comparators against bacterial isolates collected as part of the TEST study in Europe (2004-2007). Int J Antimicrob Agents. 2009;34:121–30.

    Article  PubMed  CAS  Google Scholar 

  58. Vila J, Pachón J. Therapeutic options for Acinetobacter baumannii infections: an update. Expert Opin Pharmacother. 2012;13:2319–36.

    Article  CAS  PubMed  Google Scholar 

  59. Kuo SC, Lee YT, Yang SP, et al. Eradication of multidrug-resistant Acinetobacter baumannii from the respiratory tract with inhaled colistin methanesulfonate: a matched case-control study. Clin Microbiol Infect. 2012;18:870–6.

    Article  CAS  PubMed  Google Scholar 

  60. Dalfino L, Puntillo F, Mosca A, et al. High-dose, extended-interval colistin administration in critically ill patients: is this the right dosing strategy? A preliminary study. Clin Infect Dis. 2012;54:1720–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yau W, Owen RJ, Poudyal A, et al. Colistin hetero-resistance in multidrug-resistant Acinetobacter baumannii clinical isolates from the Western Pacific region in the SENTRY antimicrobial surveillance programme. J Infect. 2009;58:138–44.

    Article  PubMed  Google Scholar 

  62. Arroyo LA, Mateos I, González V, et al. In vitro activities of tigecycline, minocycline, and colistin-tigecycline combination against multi- and pandrug-resistant clinical isolates of Acinetobacter baumannii group. Antimicrob Agents Chemother. 2009;53:1295–6.

    Article  CAS  PubMed  Google Scholar 

  63. Sun Y, Cai Y, Liu X, et al. The emergence of clinical resistance to tigecycline. Int J Antimicrob Agents. 2013;41:110–6.

    Article  CAS  PubMed  Google Scholar 

  64. Aisenberg G, Rolston KV, Safdar A. Bacteremia caused by Achromobacter and Alcaligenes species in 46 patients with cancer (1989-2003). Cancer. 2004;101:2134–40.

    PubMed  Google Scholar 

  65. Rolston KV, Messer M. The in-vitro susceptibility of Alcaligenes denitrificans subsp. xylosoxidans to 40 antimicrobial agents. J Antimicrob Chemother. 1990;26:857–60.

    Article  CAS  PubMed  Google Scholar 

  66. Yamamoto M, Nagao M, Hotta G, et al. Molecular characterization of IMP-type metallo-β-lactamases among multidrug-resistant Achromobacter xylosoxidans. J Antimicrob Chemother. 2012;67:2110–3.

    Article  CAS  PubMed  Google Scholar 

  67. Saiman L, Chen Y, Gabriel PS, et al. Synergistic activities of macrolide antibiotics against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. Antimicrob Agents Chemother. 2002;46:1105–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mann T, Ben-David D, Zlotkin A, et al. An outbreak of Burkholderia cenocepacia bacteremia in immunocompromised oncology patients. Infection. 2010;38:187–94.

    Article  CAS  PubMed  Google Scholar 

  69. Yamagishi Y, Fujita J, Takigawa K, et al. Clinical features of Pseudomonas cepacia pneumonia in an epidemic among immunocompromised patients. Chest. 1993;103:1706–9.

    Article  CAS  PubMed  Google Scholar 

  70. Heo ST, Kim SJ, Jeong YG. Hospital outbreak of Burkholderia stabilis bacteraemia related to contaminated chlorhexidine in haematological malignancy patients with indwelling catheters. J Hosp Infect. 2008;70:241–5.

    Article  CAS  PubMed  Google Scholar 

  71. Bloch KC, Nadarajah R, Jacobs R. Chryseobacterium meningosepticum: an emerging pathogen among immunocompromised adults. Report of 6 cases and literature review. Medicine. 1997;76:30–41.

    Article  CAS  PubMed  Google Scholar 

  72. Chen FL, Wang GC, Teng SO, et al. Clinical and epidemiological features of Chryseobacterium indologenes infections: analysis of 215 cases. J Microbiol Immunol Infect. 2013;46:425–32.

    Article  CAS  PubMed  Google Scholar 

  73. Lin JT, Wang WS, Yen CC, et al. Chryseobacterium indologenes bacteremia in a bone marrow transplant recipient with chronic graft-versus-host disease. Scand J Infect Dis. 2003;35:882–3.

    Article  PubMed  Google Scholar 

  74. Adachi A, Mori T, Shimizu T, et al. Chryseobacterium meningosepticum septicemia in a recipient of allogeneic cord blood transplantation. Scand J Infect Dis. 2004;36:539–40.

    Article  PubMed  Google Scholar 

  75. Kim KK, Kim MK, Lim JH, et al. Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol. 2005;55:1287–93.

    Article  CAS  PubMed  Google Scholar 

  76. Hsu MS, Liao CH, Huang YT, et al. Clinical features, antimicrobial susceptibilities, and outcomes of Elizabethkingia meningoseptica (Chryseobacterium meningosepticum) bacteremia at a medical center in Taiwan, 1999-2006. Eur J Clin Microbiol Infect Dis. 2011;30:1271–8.

    Article  CAS  PubMed  Google Scholar 

  77. Jacobs A, Chenia HY. Biofilm formation and adherence characteristics of an Elizabethkingia meningoseptica isolate from Oreochromis mossambicus. Eur J Clin Microbiol Infect Dis. 2011;30:1271–8.

    Article  CAS  Google Scholar 

  78. González LJ, Vila AJ. Carbapenem resistance in Elizabethkingia meningoseptica is mediated by metallo-β-lactamase BlaB. Antimicrob Agents Chemother. 2012;56:1686–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Hsueh PR, Hsiue TR, Wu JJ, et al. Flavobacterium indologenes bacteremia: clinical and microbiological characteristics. Clin Infect Dis. 1996;23:550–5.

    Article  CAS  PubMed  Google Scholar 

  80. Chang JC, Hsueh PR, Wu JJ, et al. Antimicrobial susceptibility of flavobacteria as determined by agar dilution and disk diffusion methods. Antimicrob Agents Chemother. 1997;41:1301–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jiang X, Wang D, Wang Y, et al. Occurrence of antimicrobial resistance genes sul and dfrA12 in hospital environmental isolates of Elizabethkingia meningoseptica. World J Microbiol Biotechnol. 2012;28:3097–102.

    Article  CAS  PubMed  Google Scholar 

  82. Green O, Murray P, Gea-Banacloche JC. Sepsis caused by Elizabethkingia miricola successfully treated with tigecycline and levofloxacin. Diagn Microbiol Infect Dis. 2008;62:430–2.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Simor AE, Ricci J, Lau A, et al. Pseudobacteremia due to Pseudomonas fluorescens. Pediatr Infect Dis. 1985;4:508–12.

    Article  CAS  PubMed  Google Scholar 

  84. Scott J, Boulton FE, Govan JR, et al. A fatal transfusion reaction associated with blood contaminated with Pseudomonas fluorescens. Vox Sang. 1988;54:201–4.

    Article  CAS  PubMed  Google Scholar 

  85. Puckett A, Davison G, Entwistle CC, et al. Post transfusion septicaemia 1980-1989: importance of donor arm cleansing. J Clin Pathol. 1992;45:155–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gershman MD, Kennedy DJ, Noble-Wang J, et al. Multistate outbreak of Pseudomonas fluorescens bloodstream infection after exposure to contaminated heparinized saline flush prepared by a compounding pharmacy. Clin Infect Dis. 2008;47:1372–9.

    Article  PubMed  Google Scholar 

  87. Wilkinson FH, Kerr KG. Bottled water as a source of multi-resistant Stenotrophomonas and Pseudomonas species for neutropenic patients. Eur J Cancer Car (Engl). 1998;7:12–4.

    Article  CAS  Google Scholar 

  88. Wong V, Levi K, Baddal B, et al. Spread of Pseudomonas fluorescens due to contaminated drinking water in a bone marrow transplant unit. J Clin Microbiol. 2011;49:2093–6.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Patel R, Paya C. Infections in solid organ transplant recipients. Clin Microbiol Rev. 1997;10:86–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. CDC. Guidelines for preventing opportunistic infections among hematopoietic cell transplant recipients. MMWR Recomm Rep. 2000;49(RR-10):1–125, CE1-7.

    Google Scholar 

  91. Boulad F, Sands S, Sklar C. Late complications after bone marrow transplantation in children and adolescents. Curr Probl Pediatr. 1998;28:273–97.

    CAS  PubMed  Google Scholar 

  92. Chawla R. Infections after bone marrow transplantation. 2009. emedicine.medscope.com/article/1013470.

  93. Appelbaum FR. The use of bone marrow and peripheral blood stem cell transplantation in the treatment of cancer. CA Cancer J Clin. 1996;46:142–64.

    Article  CAS  PubMed  Google Scholar 

  94. Thomas ED, Clift RA, Fefer A, et al. Marrow transplantation for the treatment of chronic myelogenous leukemia. Ann Intern Med. 1986;104:155–63.

    Article  CAS  PubMed  Google Scholar 

  95. Van Burik J, Weisdorf D. Infections in recipients of blood and marrow transplantation. In: Mandell GL, Bennet JE, Dolin R, editors. Principals and practice of infectious diseases 5th ed. Philadelphia: Churchill Livingstone; 2000. p. 3136–47.

    Google Scholar 

  96. Sable CA, Donowitz GR. Infections in bone marrow transplant recipients. Clin Infect Dis. 1994;18:273–81.

    Article  CAS  PubMed  Google Scholar 

  97. Engels EA, Ellis CA, Supran SE, et al. Early infection in bone marrow transplantation: quantitative study of clinical factors that affect risk. Clin Infect Dis. 1999;28:256–66.

    Article  CAS  PubMed  Google Scholar 

  98. Busca A, Saroglia EM, Giacchino M, et al. Analysis of early infectious complications in pediatric patients undergoing bone marrow transplantation. Support Care Cancer. 1999;7:253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lark R, Mcneel S, VanderHyde K, et al. Risk factors for anaerobic bloodstream infections on bone marrow transplant recipients. Clin Infect Dis. 2001;35:338–43.

    Article  Google Scholar 

  100. Wyner LM. The evaluation and management of urinary tract infections in recipients of solid organ transplants. Semin Urol. 1994;12:134–9.

    CAS  PubMed  Google Scholar 

  101. Prokurut S, Drabik E, Genda R, et al. Ganciclovir in cytomegalovirus prophylaxis in high risk pediatric renal transplant recipients. Transplant Proc. 1993;25:2577.

    Google Scholar 

  102. Couturier M, Slechta E, Goulston C, et al. Leptotrichia bacteremia in patients recovering high dose chemotherapy. J Clin Microbiol. 2012;50:1228–32.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Vidal A, Sarria J, Kimbrough RR, et al. Anaerobic bacteremia in a neutropenic patient with oral mucositis. Am J Med Sci. 2000;319:189–90.

    Article  CAS  PubMed  Google Scholar 

  104. DePauw B, Bowden R, Paya C. Management of the febrile patient in hematopoietic stem cell and solid organ transplant recipients. In: Bowden R, Ljungman P, Paya C, editors. Transplant infection. Philadelphia: Lippincott-Raven; 1998. p. 153–65.

    Google Scholar 

  105. Winn WC, Koneman EW. Konemans’s color atlas and textbook of diagnostic microbiology. 6th ed. Philadelphia: Lippincott/The Williams & Wilkins Co.; 2006.

    Google Scholar 

  106. Cooreman S, Schuermans C, Van Schaeren J, et al. Bacteremia caused by Leptotrichia trevisanii in a neutropenic patient. Anaerobe. 2011;17:1–3.

    Article  CAS  PubMed  Google Scholar 

  107. Tee W, Midolo P, Janssen PH, et al. Bacteremia due to Leptotrichia Trevisanii sp. Nov. Eur J Clin Microbiol Infect Dis. 2001;20:765–9.

    Article  CAS  PubMed  Google Scholar 

  108. Patel JB, Clarridge J, Schuster MS, et al. Bacteremia caused by novel isolate resembling Leptotrichia species in a neutropenic patient. J Clin Microbiol. 1999;37:2064–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Justesen US, Skov MN, Knudsen E, et al. 16S rRNA gene sequencing in routine identification of anaerobic bacteria isolated from bloodstream infections. J Clin Microbiol. 2008;46:1596–601.

    Article  Google Scholar 

  110. Simmon KE, Mirrett S, Relle LB, et al. Genotypic diversity of anaerobic isolates from bloodstream infections. J Clin Microbiol. 2008;46:1596–601.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Schindel C, Siepman U, Han SR, et al. Persistant legionella infection in a patient after bone marrow transplantation, vol. 38; 2000. p. 4294–5.

    Google Scholar 

  112. Beelen DW, Haralambie E, et al. Evidence that sustained growth suppression of intestinal anaerobic bacteria reduces the risk of acute graft-versus-host disease after sibling marrow transplantation. Blood. 1992;80:2668–76.

    CAS  PubMed  Google Scholar 

  113. Jones JM, Wilson R, Bealmear PM. Mortality and gross pathology of secondary disease in germfree mouse radiation chimeras. Radiat Res. 1971;45:577.

    Article  CAS  PubMed  Google Scholar 

  114. Truit RL, Winter M, Winter S. Application of germfree techniques to the treatment of leukemia in AKR mice by allogeneic bone marrow transplantation. In: Waters H, editor. The handbook of cancer immunology. Volume 5: immunotherapy. New York: Garland STPM; 1978. p. 431.

    Google Scholar 

  115. Van Bekkum DW, Roodenburg J, Heidt PJ, et al. Mitigation of secondary disease of allogeneic mouse radiation chimeras by modification of the intestinal microflora. J Natl Cancer Inst. 1974;52:401.

    Article  PubMed  Google Scholar 

  116. Miller TL, Wolin MJ. Methanogens in human and animal intestinal tracts. Syst Appl Microbiol. 1986;7:223–9.

    Article  CAS  Google Scholar 

  117. Dermoumi HL, Ansong RAM. Isolation and antimicrobial susceptibility testing of fecal strains of the archaeon Methanobrevibacter smithii. Chemotherapy. 2001;47:177–83.

    Article  CAS  PubMed  Google Scholar 

  118. Beelen DW, Haralambie E, Brandt H, et al. Evidence that sustained growth suppression of intestinal anaerobic bacteria reduces the risk of acute graft-versus-host-disease after sibling bone marrow transplantation. Blood. 1192;80:2668.

    Google Scholar 

  119. Beelen DW, Elmaagacli A, Muller KD, et al. Influence of intestinal bacterial decontamination using metronidazole and ciprofloxacin or ciprofloxacin alone on the development of acute graft-versus-host-disease after bone marrow transplantation in patients with hematologic malignancies: final results and long-term follow-up of an open-label prospective randomized trail. Blood. 1999;93:3267–75.

    CAS  PubMed  Google Scholar 

  120. Ansorg R, Rath PM, Runde V, et al. Influence of intestinal decontamination using metronidazole on the detection of methanogenic archaea in bone marrow transplant recipients. Bone Marrow Transplant. 2003;31:117–9.

    Article  CAS  PubMed  Google Scholar 

  121. Paya CV, Hermans PE, Smith TF, et al. Efficacy of ganciclovir in liver and kidney transplant recipients with severe cytomegalovirus infection. Transplantation. 1988;46:229–34.

    Article  CAS  PubMed  Google Scholar 

  122. Stouteanbeek C, Van Saens H, Mirande D, et al. A new technique of infection prevention in the intensive care unit by selective decontamination of the digestive tract. Acta Anaesthesiol Belg. 1983;34:209–21.

    Google Scholar 

  123. Van Der Waaij D. Colonization resistance of the digestive tract: clinical consequences and implications. J Antimicrob Chemother. 1982;10:263–70.

    Article  PubMed  Google Scholar 

  124. Patel R, Cockerill F, Porayko M, et al. Lactobacillemia in liver transplantation patients. Clin Infect Dis. 1994;18:207–12.

    Article  CAS  PubMed  Google Scholar 

  125. Paya CV, Hermans PE, Washington JA, et al. Incidence, distribution, and outcome of episodes of infection in 100 orthotopic liver transplantation. Mayo Clin Proc. 1989;64:555–64.

    Article  CAS  PubMed  Google Scholar 

  126. Gorensek M, Carey WD, Vogt D, et al. A multivariate analysis of risk factors for cytomegalovirus infection in liver transplantation recipients. Gastroenterology. 1990;98:1326–32.

    Article  CAS  PubMed  Google Scholar 

  127. Gorensek MJ, Carey WD, Washington JA, et al. Selective bowel decontamination with quinolones and nystatin reduces gram negative and fungal infections in orthotropic liver transplant recipients. Cleve Clin J Med. 1993;60:139–44.

    Article  CAS  PubMed  Google Scholar 

  128. Wolinsky E. Mycobacterial disease other than tuberculosis. Clin Infect Dis. 1990;5:80–9.

    Google Scholar 

  129. Zeluff BJ. Fungal Pneumonia in Transplant Recipients. Semin Respir Infect. 1990;5:50–89.

    Google Scholar 

  130. George D, Arnow P, Fox A, et al. Bacterial infections a complication of the liver transplantation. Rev Infect Dis. 1991;13:387–96.

    Article  CAS  PubMed  Google Scholar 

  131. Kusne S, Dummer JS, Singh N, et al. Infections after liver transplantation. An analysis of 101 consecutive cases. Medicine. 1988;67:132–43.

    Article  CAS  PubMed  Google Scholar 

  132. Waser M, Maggiorini M, Luthy A, et al. Infectious complications in 100 consecutive heart transplant recipients. Eur J Clin Microbiol Infect Dis. 1994;13:12–8.

    Article  CAS  PubMed  Google Scholar 

  133. Brooks R, Hofflin J, Jamieson S, et al. Infectious complications in heart-lung transplant recipients. Am J Med. 1985;79:412–22.

    Article  CAS  PubMed  Google Scholar 

  134. Krieger J, Senterfit L, Muecke E, et al. Anaerobic bacterium in renal transplantation. Urology. 1978;12:635–40.

    Article  CAS  PubMed  Google Scholar 

  135. Fox BC, Sollinger HW, Belzer FO, et al. A prospective, randomized, double-blind study of trimethoprim-sulfamethoxazole for prophylaxis of infection in renal transplantation: clinical efficacy, absorption of trimethoprim-sulfamethoxazole, effects on the microflora, and the cost-benefit of prophylaxis. Am J Med. 1990;89:255–74.

    Article  CAS  PubMed  Google Scholar 

  136. Maki DG, Fox BC, Kuntz J, et al. A prospective, randomized, double-blind study of trimethoprim-sulfamethoxazole for prophylaxis of infection in renal transplantation: side effects of trimethoprim-sulfamethoxazole, interaction with cyclosporine. J Lab Clin Med. 1992;119:11–24.

    CAS  PubMed  Google Scholar 

  137. Tolkoff-Rubin NE, Cosimi AB, Russell PS, et al. A controlled study of trimethoprim-sulfamethoxazole prophylaxis of urinary tract infection in renal transplant recipients. Rev Infect Dis. 1982;4:614–8.

    Article  CAS  PubMed  Google Scholar 

  138. Infectious Diseases Society of America. The 10 x '20 initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis. 2010;50(8):1081–3.

    Article  Google Scholar 

  139. Wright H, Bonomo RA, Paterson DL. New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn? Clin Microbiol Infect. 2017;23:704–12.

    Article  CAS  PubMed  Google Scholar 

  140. Munita JM, Aitken SL, Miller WR, et al. Multicenter evaluation of ceftolozane/tazobactam for serious infections caused by carbapenem-resistant Pseudomonas aeruginosa. Clin Infect Dis. 2017;65:158–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fraile-Ribot PA, Cabot G, Mulet X, et al. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa. J Antimicrob Chemother. 2017;73(3):658–63.

    Article  CAS  Google Scholar 

  142. Aitken SL, Tarrand JJ, Deshpande LM, et al. High rates of nonsusceptibility to ceftazidime-avibactam and identification of New Delhi metallo-β-lactamase production in Enterobacteriaceae bloodstream infections at a major cancer center. Clin Infect Dis. 2016;63(7):954–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Safdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rolston, K.V.I., Safdar, A. (2019). Pseudomonas, Stenotrophomonas, Acinetobacter, and Other Nonfermentative Gram-Negative Bacteria and Medically Important Anaerobic Bacteria in Transplant Recipients. In: Safdar, A. (eds) Principles and Practice of Transplant Infectious Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9034-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9034-4_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9032-0

  • Online ISBN: 978-1-4939-9034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics