Skip to main content

Chaperoning Against Amyloid Aggregation: Monitoring In Vitro and In Vivo

  • Protocol
  • First Online:
Calcium-Binding Proteins of the EF-Hand Superfamily

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1929))

Abstract

Protein aggregation and inclusion body formation have been a key causal phenomenon behind a majority of neurodegenerative disorders. Various approaches aimed at preventing the formation/elimination of protein aggregates are being developed to control these diseases. Molecular chaperones are a class of protein that not only direct the functionally relevant fold of the protein but also perform quality control against stress, misfolding/aggregation. Genes that encode molecular chaperones are induced and expressed in response to extreme stress conditions to “salvage” the cell by the “unfolded protein response” (UPR) signaling pathway. Here we describe in detail the various in vitro and in vivo assays involved in identifying the chaperone activity of proteins using human calnuc as a model protein. Calnuc is a Golgi resident, calcium-binding protein, identified as chaperone protein and is reported to protect the cells against the cytotoxicity caused by amyloidosis and ER stress. Calnuc is also reported to regulate Gαi activity and inflammation apart from the role of chaperoning against amyloid proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reiss AB, Arain HA, Stecker MM, Siegart NM, Kasselman LJ (2018) Amyloid toxicity in Alzheimer's disease. Rev Neurosci 29(6):613–627. https://doi.org/10.1515/revneuro-2017-0063

    Article  CAS  PubMed  Google Scholar 

  2. Eisele YS, Monteiro C, Fearns C, Encalada SE, Wiseman RL, Powers ET, Kelly JW (2015) Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discov 14:759–780. https://doi.org/10.1038/nrd4593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10–S17. https://doi.org/10.1038/nm1066

    Article  CAS  PubMed  Google Scholar 

  4. Liberek K, Lewandowska A, Zietkiewicz S (2008) Chaperones in control of protein disaggregation. EMBO J 27:328–335. https://doi.org/10.1038/sj.emboj.7601970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stull F, Koldewey P, Humes JR, Radford SE, Bardwell JCA (2016) Substrate protein folds while it is bound to the ATP-independent chaperone Spy. Nat Struct Mol Biol 23:53–58. https://doi.org/10.1038/nsmb.3133

    Article  CAS  PubMed  Google Scholar 

  6. Beissinger M, Buchner J (1998) How chaperones fold proteins. Biol Chem 379:245

    CAS  PubMed  Google Scholar 

  7. Schroder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569:29–63. https://doi.org/10.1016/j.mrfmmm.2004.06.056

    Article  CAS  PubMed  Google Scholar 

  8. Liu CY, Kaufman RJ (2003) The unfolded protein response. J Cell Sci 116:1861–1862. https://doi.org/10.1242/jcs.00408

    Article  CAS  PubMed  Google Scholar 

  9. Haslbeck M, Buchner J (2015) Assays to characterize molecular chaperone function in vitro. Methods Mol Biol 1292:39–51. https://doi.org/10.1007/978-1-4939-2522-3_3

    Article  CAS  PubMed  Google Scholar 

  10. Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82

    Article  CAS  PubMed  Google Scholar 

  11. Nollen EA, Brunsting JF, Roelofsen H, Weber LA, Kampinga HH (1999) In vivo chaperone activity of heat shock protein 70 and thermotolerance. Mol Cell Biol 19:2069–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mymrikov EV, Daake M, Richter B, Haslbeck M, Buchner J (2017) The chaperone activity and substrate spectrum of human small heat shock proteins. J Biol Chem 292:672–684. https://doi.org/10.1074/jbc.M116.760413

    Article  CAS  PubMed  Google Scholar 

  13. Dehle FC, Ecroyd H, IF M, Carver JA (2010) alphaB-Crystallin inhibits the cell toxicity associated with amyloid fibril formation by kappa-casein and the amyloid-beta peptide. Cell Stress Chaperones 15:1013–1026. https://doi.org/10.1007/s12192-010-0212-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kanuru M, Raman R, Aradhyam GK (2013) Serine protease activity of calnuc: regulation by Zn2+ and G proteins. J Biol Chem 288:1762–1773. https://doi.org/10.1074/jbc.M112.382846

    Article  CAS  PubMed  Google Scholar 

  15. Long F, Cho W, Ishii Y (2011) Expression and purification of 15N- and 13C-isotope labeled 40-residue human Alzheimer's beta-amyloid peptide for NMR-based structural analysis. Protein Expr Purif 79:16–24. https://doi.org/10.1016/j.pep.2011.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bergmeyer HU (1974) Methods of enzymatic analysis. Verlag Chemie; Academic Press, Weinheim

    Google Scholar 

  17. Lindberg DJ, Wenger A, Sundin E, Wesen E, Westerlund F, Esbjorner EK (2017) Binding of Thioflavin-T to Amyloid Fibrils Leads to Fluorescence Self-Quenching and Fibril Compaction. Biochemistry 56:2170–2174. https://doi.org/10.1021/acs.biochem.7b00035

    Article  CAS  PubMed  Google Scholar 

  18. Gras SL, Waddington LJ, Goldie KN (2011) Transmission electron microscopy of amyloid fibrils. Methods Mol Biol 752:197–214. https://doi.org/10.1007/978-1-60327-223-0_13

    Article  CAS  PubMed  Google Scholar 

  19. El-Agnaf OM, Jakes R, Curran MD, Middleton D, Ingenito R, Bianchi E, Pessi A, Neill D, Wallace A (1998) Aggregates from mutant and wild-type alpha-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of beta-sheet and amyloid-like filaments. FEBS Lett 440:71–75

    Article  CAS  PubMed  Google Scholar 

  20. Kanuru M, Aradhyam GK (2017) Chaperone-like Activity of Calnuc Prevents Amyloid Aggregation. Biochemistry 56:149–159. https://doi.org/10.1021/acs.biochem.6b00660

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopala Krishna Aradhyam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vignesh, R., Aradhyam, G.K. (2019). Chaperoning Against Amyloid Aggregation: Monitoring In Vitro and In Vivo. In: Heizmann, C. (eds) Calcium-Binding Proteins of the EF-Hand Superfamily. Methods in Molecular Biology, vol 1929. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9030-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9030-6_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9029-0

  • Online ISBN: 978-1-4939-9030-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics