Skip to main content

The Use of Co-immunoprecipitation to Study Conformation-Specific Protein Interactions of Oligomeric α-Synuclein Aggregates

  • Protocol
  • First Online:
Co-Immunoprecipitation Methods for Brain Tissue

Part of the book series: Neuromethods ((NM,volume 144))

  • 1012 Accesses

Abstract

The development of aggregates of specific disease-associated proteins represents a common denominator for many neurodegenerative disorders. The gain of function of the aggregates is hypothesized to initiate pro-degenerative signaling pathways that cause neuronal dysfunctions and ultimately death of affected neurons. Comparing the protein interactome of the native normal functioning disease-associated protein to the interactome of the aggregated forms of the same protein may reveal disease-conducting signaling hubs of relevance to specific diseases. Here, we describe the experimental setup we used to identify specific interaction partners of soluble oligomeric α-synuclein aggregates including step-by-step protocols for preparation of antibody-conjugated Sepharose beads, purification of recombinant soluble α-synuclein oligomers, preparation of synaptosomal extracts from porcine brain, and the actual co-immunoprecipitation. Our goal is to present the reader issues for consideration before starting co-immunoprecipitation experiments and a practical overview of the technical finesses. This approach can be applied to study interaction of any purified disease-linked soluble aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276(5321):2045–2047

    Article  CAS  Google Scholar 

  2. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108. https://doi.org/10.1038/ng0298-106

    Article  CAS  PubMed  Google Scholar 

  3. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E, del Ser T, Munoz DG, de Yebenes JG (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173. https://doi.org/10.1002/ana.10795

    Article  CAS  Google Scholar 

  4. Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, Sherman H, Yu I, Shah B, Weir D, Thompson C, Szu-Tu C, Trinh J, Aasly JO, Rajput A, Rajput AH, Jon Stoessl A, Farrer MJ (2013) Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord 28(6):811–813. https://doi.org/10.1002/mds.25421

    Article  CAS  PubMed  Google Scholar 

  5. Lesage S, Anheim M, Letournel F, Bousset L, Honore A, Rozas N, Pieri L, Madiona K, Durr A, Melki R, Verny C, Brice A, French Parkinson’s Disease Genetics Study G (2013) G51D alpha-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol 73(4):459–471. https://doi.org/10.1002/ana.23894

    Article  CAS  PubMed  Google Scholar 

  6. Pasanen P, Myllykangas L, Siitonen M, Raunio A, Kaakkola S, Lyytinen J, Tienari PJ, Poyhonen M, Paetau A (2014) Novel alpha-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol Aging 35(9):2180 e2181–2180 e2185. https://doi.org/10.1016/j.neurobiolaging.2014.03.024

    Article  CAS  Google Scholar 

  7. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841. https://doi.org/10.1126/science.1090278

    Article  CAS  PubMed  Google Scholar 

  8. Miller DW, Hague SM, Clarimon J, Baptista M, Gwinn-Hardy K, Cookson MR, Singleton AB (2004) Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology 62(10):1835–1838

    Article  CAS  Google Scholar 

  9. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364(9440):1167–1169. https://doi.org/10.1016/S0140-6736(04)17103-1

    Article  CAS  Google Scholar 

  10. Maraganore DM, de Andrade M, Elbaz A, Farrer MJ, Ioannidis JP, Kruger R, Rocca WA, Schneider NK, Lesnick TG, Lincoln SJ, Hulihan MM, Aasly JO, Ashizawa T, Chartier-Harlin MC, Checkoway H, Ferrarese C, Hadjigeorgiou G, Hattori N, Kawakami H, Lambert JC, Lynch T, Mellick GD, Papapetropoulos S, Parsian A, Quattrone A, Riess O, Tan EK, Van Broeckhoven C, Genetic Epidemiology of Parkinson’s Disease C (2006) Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease. JAMA 296(6):661–670. https://doi.org/10.1001/jama.296.6.661

    Article  CAS  PubMed  Google Scholar 

  11. Mueller JC, Fuchs J, Hofer A, Zimprich A, Lichtner P, Illig T, Berg D, Wullner U, Meitinger T, Gasser T (2005) Multiple regions of alpha-synuclein are associated with Parkinson’s disease. Ann Neurol 57(4):535–541. https://doi.org/10.1002/ana.20438

    Article  CAS  PubMed  Google Scholar 

  12. Mizuta I, Satake W, Nakabayashi Y, Ito C, Suzuki S, Momose Y, Nagai Y, Oka A, Inoko H, Fukae J, Saito Y, Sawabe M, Murayama S, Yamamoto M, Hattori N, Murata M, Toda T (2006) Multiple candidate gene analysis identifies alpha-synuclein as a susceptibility gene for sporadic Parkinson’s disease. Hum Mol Genet 15(7):1151–1158. https://doi.org/10.1093/hmg/ddl030

    Article  CAS  PubMed  Google Scholar 

  13. Al-Chalabi A, Durr A, Wood NW, Parkinson MH, Camuzat A, Hulot JS, Morrison KE, Renton A, Sussmuth SD, Landwehrmeyer BG, Ludolph A, Agid Y, Brice A, Leigh PN, Bensimon G, Group NGS (2009) Genetic variants of the alpha-synuclein gene SNCA are associated with multiple system atrophy. PLoS One 4(9):e7114. https://doi.org/10.1371/journal.pone.0007114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scholz SW, Houlden H, Schulte C, Sharma M, Li A, Berg D, Melchers A, Paudel R, Gibbs JR, Simon-Sanchez J, Paisan-Ruiz C, Bras J, Ding J, Chen H, Traynor BJ, Arepalli S, Zonozi RR, Revesz T, Holton J, Wood N, Lees A, Oertel W, Wullner U, Goldwurm S, Pellecchia MT, Illig T, Riess O, Fernandez HH, Rodriguez RL, Okun MS, Poewe W, Wenning GK, Hardy JA, Singleton AB, Del Sorbo F, Schneider S, Bhatia KP, Gasser T (2009) SNCA variants are associated with increased risk for multiple system atrophy. Ann Neurol 65(5):610–614. https://doi.org/10.1002/ana.21685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fredenburg RA, Rospigliosi C, Meray RK, Kessler JC, Lashuel HA, Eliezer D, Lansbury PT Jr (2007) The impact of the E46K mutation on the properties of alpha-synuclein in its monomeric and oligomeric states. Biochemistry 46(24):7107–7118. https://doi.org/10.1021/bi7000246

    Article  CAS  PubMed  Google Scholar 

  16. Li J, Uversky VN, Fink AL (2001) Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry 40(38):11604–11613

    Article  CAS  Google Scholar 

  17. Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4(11):1318–1320. https://doi.org/10.1038/3311

    Article  CAS  PubMed  Google Scholar 

  18. Cappai R, Leck SL, Tew DJ, Williamson NA, Smith DP, Galatis D, Sharples RA, Curtain CC, Ali FE, Cherny RA, Culvenor JG, Bottomley SP, Masters CL, Barnham KJ, Hill AF (2005) Dopamine promotes alpha-synuclein aggregation into SDS-resistant soluble oligomers via a distinct folding pathway. FASEB J 19(10):1377–1379. https://doi.org/10.1096/fj.04-3437fje

    Article  CAS  PubMed  Google Scholar 

  19. Binolfi A, Rasia RM, Bertoncini CW, Ceolin M, Zweckstetter M, Griesinger C, Jovin TM, Fernandez CO (2006) Interaction of alpha-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement. J Am Chem Soc 128(30):9893–9901. https://doi.org/10.1021/ja0618649

    Article  CAS  PubMed  Google Scholar 

  20. Binolfi A, Lamberto GR, Duran R, Quintanar L, Bertoncini CW, Souza JM, Cervenansky C, Zweckstetter M, Griesinger C, Fernandez CO (2008) Site-specific interactions of Cu(II) with alpha and beta-synuclein: bridging the molecular gap between metal binding and aggregation. J Am Chem Soc 130(35):11801–11812. https://doi.org/10.1021/ja803494v

    Article  CAS  PubMed  Google Scholar 

  21. Munishkina LA, Phelan C, Uversky VN, Fink AL (2003) Conformational behavior and aggregation of alpha-synuclein in organic solvents: modeling the effects of membranes. Biochemistry 42(9):2720–2730. https://doi.org/10.1021/bi027166s

    Article  CAS  PubMed  Google Scholar 

  22. Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27(34):9220–9232. https://doi.org/10.1523/JNEUROSCI.2617-07.2007

    Article  CAS  PubMed  Google Scholar 

  23. Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury PT Jr (2002) Alpha-synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 322(5):1089–1102

    Article  CAS  Google Scholar 

  24. Jung BC, Lim YJ, Bae EJ, Lee JS, Choi MS, Lee MK, Lee HJ, Kim YS, Lee SJ (2017) Amplification of distinct alpha-synuclein fibril conformers through protein misfolding cyclic amplification. Exp Mol Med 49(4):e314. https://doi.org/10.1038/emm.2017.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lindersson E, Beedholm R, Hojrup P, Moos T, Gai W, Hendil KB, Jensen PH (2004) Proteasomal inhibition by alpha-synuclein filaments and oligomers. J Biol Chem 279(13):12924–12934. https://doi.org/10.1074/jbc.M306390200

    Article  CAS  PubMed  Google Scholar 

  26. Lindersson EK, Hojrup P, Gai WP, Locker D, Martin D, Jensen PH (2004) alpha-Synuclein filaments bind the transcriptional regulator HMGB-1. Neuroreport 15(18):2735–2739

    CAS  PubMed  Google Scholar 

  27. Betzer C, Movius AJ, Shi M, Gai WP, Zhang J, Jensen PH (2015) Identification of synaptosomal proteins binding to monomeric and oligomeric alpha-synuclein. PLoS One 10(2):e0116473. https://doi.org/10.1371/journal.pone.0116473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mysling S, Betzer C, Jensen PH, Jorgensen TJ (2013) Characterizing the dynamics of alpha-synuclein oligomers using hydrogen/deuterium exchange monitored by mass spectrometry. Biochemistry 52(51):9097–9103. https://doi.org/10.1021/bi4009193

    Article  CAS  PubMed  Google Scholar 

  29. Paleologou KE, Kragh CL, Mann DM, Salem SA, Al-Shami R, Allsop D, Hassan AH, Jensen PH, El-Agnaf OM (2009) Detection of elevated levels of soluble alpha-synuclein oligomers in post-mortem brain extracts from patients with dementia with Lewy bodies. Brain 132(Pt 4):1093–1101. https://doi.org/10.1093/brain/awn349

    Article  PubMed  Google Scholar 

  30. Schilling B, Rardin MJ, MacLean BX, Zawadzka AM, Frewen BE, Cusack MP, Sorensen DJ, Bereman MS, Jing E, Wu CC, Verdin E, Kahn CR, Maccoss MJ, Gibson BW (2012) Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation. Mol Cell Proteomics 11(5):202–214. https://doi.org/10.1074/mcp.M112.017707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luk KC, Song C, O'Brien P, Stieber A, Branch JR, Brunden KR, Trojanowski JQ, Lee VM (2009) Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci U S A 106(47):20051–20056. https://doi.org/10.1073/pnas.0908005106

    Article  PubMed  PubMed Central  Google Scholar 

  32. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, Van den Haute C, Melki R, Baekelandt V (2015) alpha-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522(7556):340–344. https://doi.org/10.1038/nature14547

    Article  CAS  Google Scholar 

  33. Brettschneider J, Del Tredici K, Lee VM, Trojanowski JQ (2015) Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 16(2):109–120. https://doi.org/10.1038/nrn3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bousset L, Brundin P, Bockmann A, Meier B, Melki R (2016) An efficient procedure for removal and inactivation of alpha-synuclein assemblies from laboratory materials. J Parkinsons Dis 6(1):143–151. https://doi.org/10.3233/JPD-150691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M (1998) Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. J Biol Chem 273(41):26292–26294

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cristine Betzer or Poul Henning Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Betzer, C., Kofoed, R.H., Jensen, P.H. (2019). The Use of Co-immunoprecipitation to Study Conformation-Specific Protein Interactions of Oligomeric α-Synuclein Aggregates. In: Odagaki, Y., Borroto-Escuela, D. (eds) Co-Immunoprecipitation Methods for Brain Tissue . Neuromethods, vol 144. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8985-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8985-0_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8984-3

  • Online ISBN: 978-1-4939-8985-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics