Skip to main content

Epitope Mapping via Phage Display from Single-Gene Libraries

  • Protocol
  • First Online:
Human Monoclonal Antibodies

Abstract

Antibodies are widely used in a large variety of research applications, for diagnostics and therapy of numerous diseases, primarily cancer and autoimmune diseases. Antibodies are binding specifically to target structures (antigens). The antigen-binding properties are not only dependent on the antibody sequence, but also on the discrete antigen region recognized by the antibody (epitope). Knowing the epitope is valuable information for the improvement of diagnostic assays or therapeutic antibodies, as well as to understand the immune response of a vaccine. While huge progress has been made in the pipelines for the generation and functional characterization of antibodies, the available technologies for epitope mapping are still lacking effectiveness in terms of time and effort. Also, no technique available offers the absolute guarantee of succeeding. Thus, research to develop and improve epitope mapping techniques is still an active field. Phage display from random peptide libraries or single-gene libraries are currently among the most exploited methods for epitope mapping. The first is based on the generation of mimotopes and it is fastened to the need of high-throughput sequencing and complex bioinformatic analysis. The second provides original epitope sequences without requiring complex analysis or expensive techniques, but depends on further investigation to define the functional amino acids within the epitope. In this book chapter, we describe how to perform epitope mapping by antigen fragment phage display from single-gene antigen libraries and how to construct these types of libraries. Thus, we also provide figures and analysis to demonstrate the actual potential of this technique and to prove the necessity of certain procedural steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heesters BA, van der Poel CE, Das A, Carroll MC (2016) Antigen presentation to B cells. Trends Immunol. https://doi.org/10.1016/j.it.2016.10.003

  2. Gunn BM, Alter G (2016) Modulating antibody functionality in infectious disease and vaccination. Trends Mol Med. https://doi.org/10.1016/j.molmed.2016.09.002

  3. Soliman C, Yuriev E, Ramsland PA (2016) Antibody recognition of aberrant glycosylation on the surface of cancer cells. Curr Opin Struct Biol 44:1–8. https://doi.org/10.1016/j.sbi.2016.10.009

    Article  CAS  PubMed  Google Scholar 

  4. Rock KL, Reits E, Neefjes J (2016) Present yourself! By MHC class I and MHC class II molecules. Trends Immunol. https://doi.org/10.1016/j.it.2016.08.010

  5. Sela-Culang I, Kunik V, Ofran Y (2013) The structural basis of antibody-antigen recognition. Front Immunol 4:302. https://doi.org/10.3389/fimmu.2013.00302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaur H, Salunke DM (2015) Antibody promiscuity: understanding the paradigm shift in antigen recognition. IUBMB Life 67:498–505. https://doi.org/10.1002/iub.1397

    Article  CAS  PubMed  Google Scholar 

  7. Kringelum JV, Nielsen M, Padkjær SB, Lund O (2013) Structural analysis of B-cell epitopes in antibody:protein complexes. Mol Immunol 53:24–34. https://doi.org/10.1016/j.molimm.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  8. Gupta S, Ansari HR, Gautam A et al (2013) Identification of B-cell epitopes in an antigen for inducing specific class of antibodies. Biol Direct 8:27. https://doi.org/10.1186/1745-6150-8-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frenzel A, Schirrmann T, Hust M (2016) Phage display-derived human antibodies in clinical development and therapy. MAbs 8:1177–1194. https://doi.org/10.1080/19420862.2016.1212149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cherryholmes GA, Stanton SE, Disis ML (2015) Current methods of epitope identification for cancer vaccine design. Vaccine 33:7408–7414. https://doi.org/10.1016/j.vaccine.2015.06.116

    Article  CAS  PubMed  Google Scholar 

  11. Lanzavecchia A, Frühwirth A, Perez L, Corti D (2016) Antibody-guided vaccine design: identification of protective epitopes. Curr Opin Immunol 41:62–67. https://doi.org/10.1016/j.coi.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  12. Aghebati-Maleki L, Bakhshinejad B, Baradaran B et al (2016) Phage display as a promising approach for vaccine development. J Biomed Sci 23:66. https://doi.org/10.1186/s12929-016-0285-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pin E, Henjes F, Hong M-G et al (2016) Identification of a novel autoimmune peptide epitope of prostein in prostate cancer. J Proteome Res. https://doi.org/10.1021/acs.jproteome.6b00620

  14. Miethe S, Rasetti-Escargueil C, Liu Y et al (2014) Development of neutralizing scFv-Fc against botulinum neurotoxin A light chain from a macaque immune library. MAbs 6:446–459. https://doi.org/10.4161/mabs.27773

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mendonça M, Moreira GMSG, Conceição FR et al (2016) Fructose 1,6-bisphosphate aldolase, a novel immunogenic surface protein on Listeria species. PLoS One 11:e0160544. https://doi.org/10.1371/journal.pone.0160544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang X, Totrov M, Li W et al (2016) Rationally designed immunogens targeting HIV-1 gp120 V1V2 induce distinct conformation-specific antibody responses in rabbits. J Virol 90(24):11007–11019. https://doi.org/10.1128/JVI.01409-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. He W, Tan GS, Mullarkey CE et al (2016) Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus. Proc Natl Acad Sci 113:11931–11936. https://doi.org/10.1073/pnas.1609316113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Benjamin P (1996) Site-directed mutagenesis in epitope mapping. Methods 9:508–515

    Article  CAS  PubMed  Google Scholar 

  19. Davidson E, Doranz BJ (2014) A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes. Immunology 143:13–20. https://doi.org/10.1111/imm.12323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vernet T, Choulier L, Nominé Y et al (2015) Spot peptide arrays and SPR measurements: throughput and quantification in antibody selectivity studies. J Mol Recognit 28:635–644. https://doi.org/10.1002/jmr.2477

    Article  CAS  PubMed  Google Scholar 

  21. Wen X, Sun J, Wang X et al (2015) Identification of a novel linear epitope on the NS1 protein of avian influenza virus. BMC Microbiol 15:168. https://doi.org/10.1186/s12866-015-0507-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Augustin T, Cehlar O, Skrabana R et al (2015) Unravelling viral camouflage: approaches to the study and characterization of conformational epitopes. Acta Virol 59:103–116. https://doi.org/10.4149/av_2015_02_103

    Article  CAS  PubMed  Google Scholar 

  23. Malito E, Carfi A, Bottomley MJ (2015) Protein crystallography in vaccine research and development. Int J Mol Sci 16:13106–13140. https://doi.org/10.3390/ijms160613106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gershoni JM, Roitburd-Berman A, Siman-Tov DD et al (2007) Epitope mapping: the first step in developing epitope-based vaccines. BioDrugs 21:145–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gallagher ES, Hudgens JW (2016) Mapping protein-ligand interactions with proteolytic fragmentation, hydrogen/deuterium exchange-mass spectrometry. Methods Enzymol 566:357–404. https://doi.org/10.1016/bs.mie.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  26. Prądzińska M, Behrendt I, Astorga-Wells J et al (2016) Application of amide hydrogen/deuterium exchange mass spectrometry for epitope mapping in human cystatin C. Amino Acids. https://doi.org/10.1007/s00726-016-2316-y

  27. Schirrmann T, Meyer T, Schütte M et al (2011) Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules 16:412–426. https://doi.org/10.3390/molecules16010412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuhn P, Fühner V, Unkauf T et al (2016) Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 10:922–948. https://doi.org/10.1002/prca.201600002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hust M, Meysing M, Schirrmann T et al (2006) Enrichment of open reading frames presented on bacteriophage M13 using hyperphage. BioTechniques 41:335–342

    Article  CAS  PubMed  Google Scholar 

  30. Zantow J, Just S, Lagkouvardos I et al (2016) Mining gut microbiome oligopeptides by functional metaproteome display. Sci Rep 6:34337. https://doi.org/10.1038/srep34337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu C-H, Liu I-J, Lu R-M, Wu H-C (2016) Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci 23:8. https://doi.org/10.1186/s12929-016-0223-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kügler J, Zantow J, Meyer T, Hust M (2013) Oligopeptide m13 phage display in pathogen research. Viruses 5:2531–2545. https://doi.org/10.3390/v5102531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kügler J, Wilke S, Meier D et al (2015) Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol 15:10. https://doi.org/10.1186/s12896-015-0125-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lloyd C, Lowe D, Edwards B et al (2009) Modelling the human immune response: performance of a 1011 human antibody repertoire against a broad panel of therapeutically relevant antigens. Protein Eng Des Sel 22:159–168. https://doi.org/10.1093/protein/gzn058

    Article  CAS  PubMed  Google Scholar 

  35. Rowley MJ, O’Connor K, Wijeyewickrema L (2004) Phage display for epitope determination: a paradigm for identifying receptor-ligand interactions. Biotechnol Annu Rev 10:151–188. https://doi.org/10.1016/S1387-2656(04)10006-9

    Article  CAS  PubMed  Google Scholar 

  36. Ibsen KN, Daugherty PS (2017) Prediction of antibody structural epitopes via random peptide library screening and next generation sequencing. J Immunol Methods 451:28–36. https://doi.org/10.1016/j.jim.2017.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sieber T, Hare E, Hofmann H, Trepel M (2015) Biomathematical description of synthetic peptide libraries. PLoS One 10(6):e0129200. https://doi.org/10.1371/journal.pone.0129200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rojas G, Tundidor Y, Infante YC (2014) High throughput functional epitope mapping: revisiting phage display platform to scan target antigen surface. MAbs 6:1368–1378. https://doi.org/10.4161/mabs.36144

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cariccio VL, Domina M, Benfatto S et al (2016) Phage display revisited: epitope mapping of a monoclonal antibody directed against Neisseria meningitidis adhesin A using the PROFILER technology. MAbs 8:741–750. https://doi.org/10.1080/19420862.2016.1158371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Connor DO, Zantow J, Hust M et al (2016) Identification of novel immunogenic proteins of Neisseria gonorrhoeae by phage display. PLoS One 11(2):e0148986. https://doi.org/10.1371/journal.pone.0148986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rondot S, Koch J, Breitling F, Dübel S (2001) A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol 19:75–78. https://doi.org/10.1038/83567

    Article  CAS  PubMed  Google Scholar 

  42. Soltes G, Hust M, Ng KKY, Bansal A et al (2007) On the influence of vector design on antibody phage display. J Biotechnol 127:626–637. https://doi.org/10.1016/j.jbiotec.2006.08.015

    Article  CAS  PubMed  Google Scholar 

  43. Levy ED, De S, Teichmann SA (2012) Cellular crowding imposes global constraints on the chemistry and evolution of proteomes. Proc Natl Acad Sci U S A 109(50):20461–20466. https://doi.org/10.1073/pnas.1209312109

    Article  PubMed  PubMed Central  Google Scholar 

  44. Singaravelan B, Roshini BR, Munavar MH (2010) Evidence that the supE44 mutation of Escherichia coli is an amber suppressor allele of glnX and that it also suppresses ochre and opal nonsense mutations. J Bacteriol 192(22):6039–6044. https://doi.org/10.1128/JB.00474-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. O'Donoghue P, Prat L, Heinemann IU et al (2012) Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion. FEBS Lett 586(21):3931–3937. https://doi.org/10.1016/j.febslet.2012.09.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moreira GMSG, Fühner V, Hust M (2018) Epitope mapping by phage display. Methods Mol Biol 1701:497–518. https://doi.org/10.1007/978-1-4939-7447-4_28

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank CNPq for providing the scholarship of GMSGM (process 204693/2014-4). V.F. was funded by the Federal State of Lower Saxony, Niedersächsisches Vorab (VWZN2889/3215/3266). This chapter is a completely revised and updated version of [46].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hust .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fühner, V. et al. (2019). Epitope Mapping via Phage Display from Single-Gene Libraries. In: Steinitz, M. (eds) Human Monoclonal Antibodies. Methods in Molecular Biology, vol 1904. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8958-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8958-4_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8957-7

  • Online ISBN: 978-1-4939-8958-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics