Skip to main content

Computational Prediction of Drug-Target Interactions via Ensemble Learning

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1903))

Abstract

Therapeutic effects of drugs are mediated via interactions between them and their intended targets. As such, prediction of drug-target interactions is of great importance. Drug-target interaction prediction is especially relevant in the case of drug repositioning where attempts are made to repurpose old drugs for new indications. While experimental wet-lab techniques exist for predicting such interactions, they are tedious and time-consuming. On the other hand, computational methods also exist for predicting interactions, and they do so with reasonable accuracy. In addition, computational methods can help guide their wet-lab counterparts by recommending interactions for further validation. In this chapter, a computational method for predicting drug-target interactions is presented. Specifically, we describe a machine learning method that utilizes ensemble learning to perform predictions. We also mention details pertaining to the preparation of the data required for the prediction effort and demonstrate how to evaluate and improve prediction performance.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Yıldırım MA, Goh K-I, Cusick ME et al (2007) Drug-target network. Nat Biotechnol 25:1119–1126

    Article  Google Scholar 

  2. Paul SM, Mytelka DS, Dunwiddie CT et al (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9:203–214

    Article  CAS  Google Scholar 

  3. Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673–683

    Article  CAS  Google Scholar 

  4. Novac N (2013) Challenges and opportunities of drug repositioning. Trends Pharmacol Sci 34:267–272

    Article  CAS  Google Scholar 

  5. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    Article  CAS  Google Scholar 

  6. Imming P, Sinning C, Meyer A (2006) Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov 5:821–834

    Article  CAS  Google Scholar 

  7. Bolton EE, Wang Y, Thiessen PA et al (2008) PubChem: integrated platform of small molecules and biological activities. In: Ralph AW, David CS (eds) . Annual reports in computational chemistry, Elsevier, pp 217–241

    Google Scholar 

  8. Kanehisa M, Goto S, Sato Y et al (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114

    Article  CAS  Google Scholar 

  9. Law V, Knox C, Djoumbou Y et al (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42:D1091–D1097

    Article  CAS  Google Scholar 

  10. Kuhn M, Szklarczyk D, Pletscher-Frankild S et al (2014) STITCH 4: integration of protein–chemical interactions with user data. Nucleic Acids Res 42:D401–D407

    Article  CAS  Google Scholar 

  11. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36

    Article  CAS  Google Scholar 

  12. Kuhn M, Campillos M, Letunic I et al (2010) A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 6:343

    Article  Google Scholar 

  13. Skrbo A, Begović B, Skrbo S (2004) Classification of drugs using the ATC system (anatomic, therapeutic, chemical classification) and the latest changes. Med Arh 58:138–141

    PubMed  Google Scholar 

  14. Jain E, Bairoch A, Duvaud S et al (2009) Infrastructure for the life sciences: design and implementation of the UniProt website. BMC Bioinformatics 10:136

    Article  Google Scholar 

  15. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  Google Scholar 

  16. Emig D, Ivliev A, Pustovalova O et al (2013) Drug target prediction and repositioning using an integrated network-based approach. PLoS One 8:e60618

    Article  CAS  Google Scholar 

  17. Zong N, Kim H, Ngo V et al (2017) Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations. Bioinformatics 33(15):2337–2344

    Article  Google Scholar 

  18. Yamanishi Y, Araki M, Gutteridge A et al (2008) Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24:i232–i240

    Article  CAS  Google Scholar 

  19. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197

    Article  CAS  Google Scholar 

  20. Hattori M, Okuno Y, Goto S et al (2003) Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J Am Chem Soc 125:11853–11865

    Article  CAS  Google Scholar 

  21. Bleakley K, Yamanishi Y (2009) Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics 25:2397–2403

    Article  CAS  Google Scholar 

  22. Xia Z, Wu L-Y, Zhou X et al (2010) Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst Biol 4:S6

    Article  Google Scholar 

  23. Laarhoven TV, Nabuurs SB, Marchiori E (2011) Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 27:3036–3043

    Article  Google Scholar 

  24. Chen X, Liu M-X, Yan G-Y (2012) Drug-target interaction prediction by random walk on the heterogeneous network. Mol BioSyst 8:1970–1978

    Article  CAS  Google Scholar 

  25. Gönen M (2012) Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 28:2304–2310

    Article  Google Scholar 

  26. Mei J-P, Kwoh C-K, Yang P et al (2013) Drug–target interaction prediction by learning from local information and neighbors. Bioinformatics 29:238–245

    Article  CAS  Google Scholar 

  27. Zheng X, Ding H, Mamitsuka H et al (2013) Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. Proceedings of the 19th ACM SIGKDD International conference on knowledge discovery and data mining, ACM, Chicago, IL, pp 1025–1033

    Google Scholar 

  28. Cobanoglu MC, Liu C, Hu F et al (2013) Predicting drug–target interactions using probabilistic matrix factorization. J Chem Inf Model 53:3399–3409

    Article  CAS  Google Scholar 

  29. Fakhraei S, Huang B, Raschid L et al (2014) Network-based drug-target interaction prediction with probabilistic soft logic. IEEE/ACM Trans Comput Biol Bioinform 11:775–787

    Article  Google Scholar 

  30. Ba-alawi W, Soufan O, Essack M et al (2016) DASPfind: new efficient method to predict drug–target interactions. J Chem 8:15

    Article  Google Scholar 

  31. Ezzat A, Zhao P, Wu M et al (2016) Drug-target interaction prediction with graph regularized matrix factorization. IEEE/ACM Trans Comput Biol Bioinform 14:646–656

    Article  Google Scholar 

  32. Liu Y, Wu M, Miao C et al (2016) Neighborhood regularized logistic matrix factorization for drug-target interaction prediction. PLoS Comput Biol 12:e1004760

    Article  Google Scholar 

  33. Nascimento ACA, Prudêncio RBC, Costa IG (2016) A multiple kernel learning algorithm for drug-target interaction prediction. BMC Bioinformatics 17:46

    Article  Google Scholar 

  34. Hao M, Bryant SH, Wang Y (2017) Predicting drug-target interactions by dual-network integrated logistic matrix factorization. Sci Rep 7. https://doi.org/10.1038/srep40376

  35. He Z, Zhang J, Shi X-H et al (2010) Predicting drug-target interaction networks based on functional groups and biological features. PLoS One 5:e9603

    Article  Google Scholar 

  36. Yu H, Chen J, Xu X et al (2012) A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One 7:e37608

    Article  CAS  Google Scholar 

  37. Ezzat A, Wu M, Li X-L et al (2016) Drug-target interaction prediction via class imbalance-aware ensemble learning. BMC Bioinformatics 17:267–276

    Article  Google Scholar 

  38. Ezzat A, Wu M, Li X-L et al (2017) Drug-target interaction prediction using ensemble learning and dimensionality reduction. Methods 129:81–88

    Article  CAS  Google Scholar 

  39. Wang L, You Z-H, Chen X et al (2016) RFDT: a rotation Forest-based predictor for predicting drug-target interactions using drug structure and protein sequence information. Curr Protein Pept Sci

    Google Scholar 

  40. Huang Y-A, You Z-H, Chen X (2016) A systematic prediction of drug-target interactions using molecular fingerprints and protein sequences. Curr Protein Pept Sci

    Google Scholar 

  41. Xiao X, Min J-L, Wang P et al (2013) iGPCR-drug: a web server for predicting interaction between gpcrs and drugs in cellular networking. PLoS One 8:e72234

    Article  CAS  Google Scholar 

  42. Meng F-R, You Z-H, Chen X et al (2017) Prediction of drug–target interaction networks from the integration of protein sequences and drug chemical structures. Molecules 22:1119

    Article  Google Scholar 

  43. Wang Y, Zeng J (2013) Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics 29:i126–i134

    Article  CAS  Google Scholar 

  44. Wang C, Liu J, Luo F et al (2014) Pairwise input neural network for target-ligand interaction prediction. 2014 I.E. International Conference on Bioinformatics and Biomedicine (BIBM), Belfast, pp 67–70

    Google Scholar 

  45. Tian K, Shao M, Wang Y et al (2016) Boosting compound-protein interaction prediction by deep learning. Methods 110:64–72

    Article  CAS  Google Scholar 

  46. Wan F, Zeng J (2016). Deep learning with feature embedding for compound-protein interaction prediction. bioRxiv

    Google Scholar 

  47. Hu P-W, Chan KCC, You Z-H (2016) Large-scale prediction of drug-target interactions from deep representations. 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, pp 1236–1243

    Google Scholar 

  48. Wang L, You Z-H, Chen X et al (2017) A computational-based method for predicting drug–target interactions by using stacked autoencoder deep neural network. J Comput Biol

    Google Scholar 

  49. Wen M, Zhang Z, Niu S et al (2017) Deep-learning-based drug–target interaction prediction. J Proteome Res 16:1401–1409

    Article  CAS  Google Scholar 

  50. Yamanishi Y, Pauwels E, Saigo H et al (2011) Extracting sets of chemical substructures and protein domains governing drug-target interactions. J Chem Inf Model 51:1183–1194

    Article  CAS  Google Scholar 

  51. Tabei Y, Pauwels E, Stoven V et al (2012) Identification of chemogenomic features from drug–target interaction networks using interpretable classifiers. Bioinformatics 28:i487–i494

    Article  CAS  Google Scholar 

  52. Zu S, Chen T, Li S (2015) Global optimization-based inference of chemogenomic features from drug–target interactions. Bioinformatics 31:2523–2529

    Article  CAS  Google Scholar 

  53. Cao D-S, Xiao N, Xu Q-S et al (2015) Rcpi: R/bioconductor package to generate various descriptors of proteins, compounds and their interactions. Bioinformatics 31:279–281

    Article  CAS  Google Scholar 

  54. Li Z-R, Lin HH, Han LY et al (2006) PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res 34:W32–W37

    Article  CAS  Google Scholar 

  55. Zhou Z-H (2012) Ensemble methods: foundations and algorithms. CRC Press

    Google Scholar 

  56. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

  57. de Jong S (1993) SIMPLS: an alternative approach to partial least squares regression. Chemom Intell Lab Syst 18:251–263

    Article  Google Scholar 

  58. Park Y, Marcotte EM (2012) Flaws in evaluation schemes for pair-input computational predictions. Nat Methods 9:1134–1136

    Article  CAS  Google Scholar 

  59. Yang J, Roy A, Zhang Y (2013) BioLiP: a semi-manually curated database for biologically relevant ligand–protein interactions. Nucleic Acids Res 41:D1096–D1103

    Article  CAS  Google Scholar 

  60. Chen X, Liu M, Gilson MK (2001) BindingDB: a web-accessible molecular recognition database. Comb Chem High Throughput Screen 4:719–725

    Article  CAS  Google Scholar 

  61. Coelho ED, Arrais JP, Oliveira JL (2016) Computational discovery of putative leads for drug repositioning through drug-target interaction prediction. PLoS Comput Biol 12:e1005219

    Article  Google Scholar 

  62. Pahikkala T, Airola A, Pietilä S et al (2014) Toward more realistic drug–target interaction predictions. Brief Bioinform 16:325–337

    Article  Google Scholar 

  63. Metz JT, Johnson EF, Soni NB et al (2011) Navigating the kinome. Nat Chem Biol 7:200–202

    Article  CAS  Google Scholar 

  64. Davis MI, Hunt JP, Herrgard S et al (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 29:1046–1051

    Article  CAS  Google Scholar 

  65. Cheng Z, Zhou S, Wang Y et al (2016) Effectively identifying compound-protein interactions by learning from positive and unlabeled examples. IEEE/ACM Trans Comput Biol Bioinform:1–1

    Google Scholar 

  66. Lan W, Wang J, Li M et al (2016) Predicting drug–target interaction using positive-unlabeled learning. Neurocomputing 206:50–57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ezzat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ezzat, A., Wu, M., Li, X., Kwoh, CK. (2019). Computational Prediction of Drug-Target Interactions via Ensemble Learning. In: Vanhaelen, Q. (eds) Computational Methods for Drug Repurposing. Methods in Molecular Biology, vol 1903. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8955-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8955-3_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8954-6

  • Online ISBN: 978-1-4939-8955-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics