Skip to main content

Formulation and Process Development for Lyophilized Biological Reference Materials

  • Protocol
  • First Online:
Lyophilization of Pharmaceuticals and Biologicals

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Biologicals can often be inherently unstable in the liquid state and require lyophilization to ensure long-term stability. We describe our approach to the lyophilization of a wide range of biological reference materials, many prepared as part of our work on behalf of the WHO, to develop freeze-dried reference materials to assign biological activity. These can cover a wide range of materials, often purified proteins and sera but also including nucleic acids and viruses. Recent trends in optimizing our approach are presented; the importance of noninvasive monitoring is illustrated and the challenges of formulation design and cycle optimization are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO (2006) Recommendations for the preparation, characterization and establishment of international and other biological reference standards (revised 2004), WHO technical report series, No. 932. WHO, Geneva, pp 75–131

    Google Scholar 

  2. Phillips P (1998) The preparation of International Biological Standards. Fresenius J Anal Chem 360:473–475. https://doi.org/10.1007/s002160050742

    Article  CAS  Google Scholar 

  3. Matejtschuk P, Anderson M, Jefferson P (2010) Lyophilization of biological standards. In: Rey L, May JC (eds) Lyophilization/freeze drying of pharmaceutical & biological products, 3rd edn. Informa, New York, NY, pp 317–352

    Google Scholar 

  4. Matejtschuk P, Rafiq S, Johnes S, Gaines Das R (2005) A comparison of vials with ampoules for the storage of biological reference materials. Biologicals 33(2):63–70

    Article  CAS  Google Scholar 

  5. Kett V (2009) Thermal Analysis - the use of DSC & MTDSC in analyzing freeze-dried formulations and products. Am Pharm Rev 12:24–29

    CAS  Google Scholar 

  6. Meister E, Gieseler H (2009) Freeze-dry microscopy of protein/sugar mixtures: drying behavior, interpretation of collapse temperatures and a comparison to corresponding glass transition data. J Pharm Sci 98:3072–3087

    Article  CAS  Google Scholar 

  7. Meister E, Sasi S, Gieseler H (2009) Freeze-dry microscopy: impact of nucleation temperature and excipient concentration on collapse temperature data. AAPS PharmSciTech 10(2):582–588. https://doi.org/10.1208/s12249-009-9245-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Adams GDJ (1991) The loss of substrate from a vial during freeze-drying using Escherichia coli as a trace organism. J Chem Technol Biotechnol 52(4):511–518

    Article  Google Scholar 

  9. Cook IA, Ward KR (2011) Applications of headspace moisture analysis for investigating the water dynamics within a sealed vial containing freeze-dried material. PDA J Pharm Sci Technol 65:2–11

    Article  CAS  Google Scholar 

  10. Cook IA, Ward KR (2011) Headspace moisture mapping and the information that can be gained about freeze-dried materials and processes. PDA J Pharm Sci Technol 65(5):457–467. https://doi.org/10.5731/pdajpst.2011.00760

    Article  CAS  PubMed  Google Scholar 

  11. Jones JA, Last IR, MacDonald BF, Prebble KA (1993) Development and transferability of near-infrared methods for determination of moisture in a freeze-dried injection product. J Pharm Biomed Anal 11:1227–1231

    Article  CAS  Google Scholar 

  12. Kamat MS, Lodder RA, DeLuca PP (1989) Near Infra red spectroscopic determination of residual moisture in lyophilized sucrose through intact glass vials. Pharm Res 6(11):961–965

    Article  CAS  Google Scholar 

  13. Lin TP, Hsu CC (2002) Determination of residual moisture in lyophilized protein pharmaceuticals using a rapid and noninvasive method: near infrared spectroscopy. PDA J Pharm Sci Technol 56(4):196–205

    PubMed  Google Scholar 

  14. Malik KP, Duru C, Ahmed M, Matejtschuk P (2010) Analytical options for the measurement of residual moisture content in lyophilized biological materials. Am Pharm Rev 13(5):42–47

    CAS  Google Scholar 

  15. Ferguson M, Wilkinson DE, Heath A, Matejtschuk P (2011) The first international standard for antibodies to HPV 16. Vaccine 29(38):6520–6526

    Article  CAS  Google Scholar 

  16. De Beer TR, Vercruysse P, Burggraeve A, Quinten T, Ouyang J, Zhang X, Vervaet C, Remon JP, Baeyens WR (2009) In-line and real-time process monitoring of a freeze drying process using Raman and NIR spectroscopy as complementary process analytical technology (PAT) tools. J Pharm Sci 98(9):3430–3446. https://doi.org/10.1002/jps.21633

    Article  CAS  PubMed  Google Scholar 

  17. Kauppinen A, Toiviainen M, Korhonen O, Aaltonen J, Järvinen K, Paaso J, Juuti M, Ketolainen J (2013) In-line multipoint near-infrared spectroscopy for moisture content quantification during freeze-drying. Anal Chem 85(4):2377–2384

    Article  CAS  Google Scholar 

  18. De Jonge J, Amorij JP, Hinrichs WL, Wilschut J, Huckriede A, Frijlink HW (2007) Inulin sugar glasses preserve the structural integrity and biological activity of influenza virosomes during freeze-drying and storage. Eur J Pharm Sci 32(1):33–44

    Article  Google Scholar 

  19. Pastorino B, Baronti C, Gould EA, Charrel RN, de Lamballerie X (2015) Effect of chemical stabilizers on the thermostability and infectivity of a representative panel of freeze-dried viruses. PLoS One 10(4):e0118963. https://doi.org/10.1371/journal.pone.0118963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fryer JF, Heath AB, Wilkinson DE, Minor PD (2017) A collaborative study to establish the 3rd WHO International Standard for hepatitis B virus for nucleic acid amplification techniques. Biologicals 46:57–63

    Article  CAS  Google Scholar 

  21. Fryer JF, Heath AB, Minor PD, Collaborative Study Group (2016) A collaborative study to establish the 1st WHO International Standard for human cytomegalovirus for nucleic acid amplification technology. Biologicals 44(4):242–251

    Article  CAS  Google Scholar 

  22. Fryer JF, Heath AB, Wilkinson DE, Minor PD, Collaborative Study Group (2016) A collaborative study to establish the 1st WHO International Standard for Epstein-Barr virus for nucleic acid amplification techniques. Biologicals 44(5):423–433. https://doi.org/10.1016/j.biologicals.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  23. Hansen LJ, Daoussi R, Vervaet C, Remon JP, De Beer TR (2015) Freeze-drying of live virus vaccines: a review. Vaccine 33(42):5507–5519. https://doi.org/10.1016/j.vaccine.2015.08.085

    Article  CAS  PubMed  Google Scholar 

  24. Natan D, Nagler A, Arav A (2009) Freeze-drying of mononuclear cells derived from umbilical cord blood followed by colony formation. PLoS One 4(4):e5240. https://doi.org/10.1371/journal.pone.0005240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arav A, Natan D (2012) Freeze drying of red blood cells: the use of directional freezing and a new radio frequency lyophilization device. Biopreserv Biobank 10(4):386–394. https://doi.org/10.1089/bio.2012.0021

    Article  CAS  PubMed  Google Scholar 

  26. Ward K, Cowen A, Peacock T (2012) Freeze drying method. WO2012098358 A1

    Google Scholar 

  27. Loi P, Iuso D, Czernik M, Zacchini F, Ptak G (2013) Towards storage of cells and gametes in dry form. Trends Biotechnol 31(12):688–695. https://doi.org/10.1016/j.tibtech.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  28. White HE, Matejtschuk P, Rigsby P, Gabert J, Lin F, Wang YL, Branford S, Müller MC, Beaufils N, Beillard E, Colomer D, Dvorakova D, Ehrencrona H, Goh HG, El Housni H, Jones D, Kairisto V, Kamel-Reid S, Kim DW, Langabeer S, Ma ES, Press RD, Romeo G, Wang L, Zoi K, Hughes T, Saglio G, Hochhaus A, Goldman JM, Metcalfe P, Cross NC (2010) Establishment of the 1st World Health Organization International Genetic Reference Panel for quantitation of BCR-ABL mRNA. Blood 116(22):e111–e117. https://doi.org/10.1182/blood-2010-06-291641 PMID: 20720184

    Article  CAS  PubMed  Google Scholar 

  29. Gray E, Hawkins JR, Morrison M, Hawkins M, Byrne E, Kitchen S, Jennings I, Makris M, Preston FE, Metcalfe P (2006) Establishment of the 1st International Genetic Reference Panel for factor V Leiden (G1691A), human gDNA. Thromb Haemost 96:215–219

    Article  CAS  Google Scholar 

  30. Cranage MP, Gurner BW, Coombs RR (1983) Glutaraldehyde stabilisation of antibody-linked erythrocytes for use in reverse passive and related haemagglutination assays. J Immunol Methods 64(1-2):7–16

    Article  CAS  Google Scholar 

  31. Matejtschuk P, Easter G, Thorpe R, Coombs RR (1988) Experimental studies on red cell-based assays for total IgE and allergen-specific IgE. Int Arch Appl Immunol 86(1):106–111

    Article  CAS  Google Scholar 

  32. Stebbings R, Wang L, Sutherland J, Kammel M, Gaigalas AK, John M, Roemer B, Kuhne M, Schneider RJ, Braun M, Engel A, Dikshit DK, Abbasi F, Marti GE, Sassi MP, Revel L, Kim SK, Baradez MO, Lekishvili T, Marshall D, Whitby L, Jing W, Ost V, Vonsky M, Neukammer J (2015) Quantification of cells with specific phenotypes I: determination of CD4+ cell count per microliter in reconstituted lyophilized human PBMC prelabeled with anti-CD4 FITC antibody. Cytometry A 87(3):244–253. https://doi.org/10.1002/cyto.a.22614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang W (2000) Lyophilization and development of solid protein pharmaceuticals. Int J Pharm 203:1–60

    Article  CAS  Google Scholar 

  34. Costantino HR (2004) Excipients for use in lyophilized pharmaceutical peptide, protein and other bioproducts. In: Costantino HR, Pikal MJ (eds) Lyophilization of biopharmaceuticals. AAPS Press, Arlington, VA, pp 139–228

    Google Scholar 

  35. Johnson RE, Kirchhoff CF (2002) Gaud HT (2002) Mannitol–sucrose mixtures—versatile formulations for protein lyophilization. J Pharm Sci 91:914–922

    Article  CAS  Google Scholar 

  36. Duru C, Swann C, Dunleavy U, Mulloy B, Matejtschuk P (2015) The importance of formulation in the successful lyophilization of influenza reference materials. Biologicals 43(2):110–116. https://doi.org/10.1016/j.biologicals.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  37. Mawas F, Bolgiano B, Rigsby P, Crane D, Belgrave D, Corbel MJ (2007) Evaluation of the saccharide content and stability of the first WHO International Standard for Haemophilus influenzae b capsular polysaccharide. Biologicals 35(4):235–245

    Article  CAS  Google Scholar 

  38. Stickings P, Rigsby P, Coombes L, Malik K, Matejtschuk P, Sesardic D (2010) Collaborative study for the calibration of a replacement international standard for diphtheria toxoid adsorbed. Biologicals 38(5):529–538

    Article  Google Scholar 

  39. Grant Y, Matejtschuk P, Dalby PA (2009) Rapid optimization of protein freeze-drying formulations using ultra scale-down and factorial design of experiment in microplates. Biotechnol Bioeng 104:957–964

    Article  CAS  Google Scholar 

  40. Grant Y, Matejtschuk P, Bird C, Wadhwa M, Dalby PA (2012) Freeze drying formulation using microscale and of experiment approaches: a case study using granulocyte colony-stimulating factor. Biotechnol Lett 34(4):641–648. https://doi.org/10.1007/s10529-011-0822-2

    Article  CAS  PubMed  Google Scholar 

  41. Smith G, Arshad MS, Polygalov E, Ermolina I, McCoy TR, Matejtschuk P (2017) Process understanding in freeze-drying cycle development: applications for through-vial impedance spectroscopy (TVIS) in mini-pilot studies. J Pharm Innov 12:26. https://doi.org/10.1007/s12247-016-9266-5

    Article  Google Scholar 

  42. Matejtschuk P, Phillips PK (2008) Product stability and accelerated degradation studies. In: Stacey G, Davis JM (eds) Medicines from animal cell culture. Wiley, Chichester, UK pp 503–522

    Google Scholar 

  43. Robinson MJ, Matejtschuk P, Bristow AF, Dalby PA (2018) Tm-values and unfolded fraction can predict aggregation rates for granulocyte colony stimulating factor variant formulations but not under predominantly native conditions. Mol Pharm 15:256. https://doi.org/10.1021/acs.molpharmaceut.7b00876

    Article  CAS  PubMed  Google Scholar 

  44. Malik K, Matejtschuk P, Thelwell C, Burns C (2013) Differential scanning fluorimetry: rapid screening of formulations that promote the stability of reference preparations. J Pharm Biomed Anal 77:163–166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank our many colleagues at NIBSC with whom development studies have been undertaken and those in the Standards Processing Division with whom we cooperate to deliver large-scale batches of lyophilized material. We also thank academic collaborators, especially Professor Paul Dalby, UCL and former students Drs. Mathew Robinson and Yitzchak Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Matejtschuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Matejtschuk, P., Malik, K., Duru, C. (2019). Formulation and Process Development for Lyophilized Biological Reference Materials. In: Ward, K., Matejtschuk, P. (eds) Lyophilization of Pharmaceuticals and Biologicals. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8928-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8928-7_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8927-0

  • Online ISBN: 978-1-4939-8928-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics