Skip to main content

Methods to Quantify Nanomaterial Association with, and Distribution Across, the Blood–Brain Barrier In Vivo

  • Protocol
  • First Online:
Nanotoxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1894))

Abstract

The role and functional anatomy of the blood–brain barrier (BBB) is summarized to enable the investigator to appropriately address evaluation of nanomaterial interaction with, and distribution across, it into brain tissue (parenchyma). Transport mechanisms across the BBB are presented, in relation to nanomaterial physicochemical properties. Measures and test substances to assess BBB integrity/disruption/permeation are introduced, along with how they are used to interpret the results obtained with the presented methods. Experimental pitfalls and misinterpretation of results of studies of brain nanomaterial uptake are briefly summarized, that can be avoided with the methods presented in this chapter. Two methods are presented. The in situ brain perfusion technique is used to determine rate and extent of nanomaterial distribution into the brain. The capillary depletion method separates brain parenchymal tissue from the endothelial cells that contribute to the BBB. It is used to verify nanomaterial brain tissue entry. These methods are best used together, the latter refining the results obtained with the former. Details of the materials and equipment needed to conduct these methods, and description of the procedures and data interpretation, are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanovich E, Bartus RT, Friden PM, Dean RL, Le HQ, Brightman MW (1995) Pathway across blood-brain barrier opened by the bradykinin agonist, RMP-7. Brain Res 705:125–135

    Article  CAS  Google Scholar 

  2. Zlokovic BV, Apuzzo ML (1998) Strategies to circumvent vascular barriers of the central nervous system. Neurosurgery 43:877–878

    Article  CAS  Google Scholar 

  3. Boström M, Hellstroem Erkenstam N, Kaluza D, Jakobsson L, Kalm M, Blomgren K (2014) The hippocampal neurovascular niche during normal development and after irradiation to the juvenile mouse brain. Int J Radiat Biol 90:778–789

    Article  Google Scholar 

  4. Ohno K, Pettigrew KD, Rapoport SI (1978) Lower limits of cerebrovascular permeability to nonelectrolytes in the conscious rat. Am J Physiol 235:H299–H307

    CAS  PubMed  Google Scholar 

  5. Calvo P, Gouritin B, Chacun H, Desmaele D, D’Angelo J, Noel JP, Georgin D, Fattal E, Andreux JP, Couvreur P (2001) Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res 18:1157–1166

    Article  CAS  Google Scholar 

  6. Levin VA (1980) Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 23:682–684

    Article  CAS  Google Scholar 

  7. Laterra J, Keep R, Betz AL, Goldstein GW (1999) Blood-brain-cerebrospinal fluid barriers. In: Siegel GJ, Agranoff BW (eds) Basic neurochemistry: molecular, cellular and medical aspects. Lippincott-Raven Publishers, Philadelphia, PA, pp 671–689

    Google Scholar 

  8. Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32:1959–1972

    Article  CAS  Google Scholar 

  9. Yokel RA (2006) Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J Alzheimers Dis 10:223–253

    Article  Google Scholar 

  10. Yokel RA, Grulke EA, MacPhail RC (2013) Metal-based nanoparticle interactions with the nervous system: the challenge of brain entry and the risk of retention in the organism. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5:346–373

    Article  CAS  Google Scholar 

  11. Madhusoodanan J (2016) Designing in vitro models of the blood-brain barrier. The Scientist (September 1)

    Google Scholar 

  12. Mantle JL, Min L, Lee KH (2016) Minimum transendothelial electrical resistance thresholds for the study of small and large molecule drug transport in a human in vitro blood-brain barrier model. Mol Pharm 13:4191–4198

    Article  CAS  Google Scholar 

  13. Abbott NJ, Dolman DEM, Drndarski S, Fredriksson SM (2012) An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes. Methods Mol Biol 814:415–430

    Article  CAS  Google Scholar 

  14. Butt AM, Jones HC, Abbott NJ (1990) Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 429:47–62

    Article  CAS  Google Scholar 

  15. Disdier C, Devoy J, Cosnefroy A, Chalansonnet M, Herlin-Boime N, Brun E, Lund A, Mabondzo A (2015) Tissue biodistribution of intravenously administrated titanium dioxide nanoparticles revealed blood-brain barrier clearance and brain inflammation in rat. Part Fibre Toxicol 12:27

    Article  Google Scholar 

  16. Mendonca MCP, Soares ES, de Jesus MB, Ceragioli HJ, Batista AG, Nyul-Toth A, Molnar J, Wilhelm I, Marostica MR, Krizbai I, da Cruz-Hofling MA (2016) PEGylation of reduced graphene oxide induces toxicity in cells of the blood-brain barrier: an in vitro and in vivo study. Mol Pharm 13:3913–3924

    Article  CAS  Google Scholar 

  17. Yokel RA, Florence RL, Unrine JM, Tseng MT, Graham UM, Wu P, Grulke EA, Sultana R, Hardas SS, Butterfield DA (2009) Biodistribution and oxidative stress effects of a systemically-introduced commercial ceria engineered nanomaterial. Nanotoxicology 3:234–248

    Article  CAS  Google Scholar 

  18. Frigell J, Garcia I, Gomez-Vallejo V, Llop J, Penades S (2014) 68Ga-labeled gold glyconanoparticles for exploring blood-brain barrier permeability: preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. J Am Chem Soc 136:449–457

    Article  CAS  Google Scholar 

  19. Sela H, Elia P, Zach R, Zeiri Y, Sela H, Karpas Z, Zeiri Y, Cohen H (2015) Spontaneous penetration of gold nanoparticles through the blood brain barrier (BBB). J Nanobiotechnol 13:71

    Article  Google Scholar 

  20. Schleh C, Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schaeffler M, Schmid G, Simon U, Kreyling WG (2012) Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 6:36–46

    Article  CAS  Google Scholar 

  21. Buzulukov YP, Arianova EA, Demin VF, Safenkova IV, Gmoshinski IV, Tutelyan VA (2014) Bioaccumulation of silver and gold nanoparticles in organs and tissues of rats studied by neutron activation analysis. Biol Bull 41:255–263

    Article  CAS  Google Scholar 

  22. Gessner A, Olbrich C, Schroder W, Kayser O, Muller RH (2001) The role of plasma proteins in brain targeting: species dependent protein adsorption patterns on brain-specific lipid drug conjugate (LDC) nanoparticles. Int J Pharm 214:87–91

    Article  CAS  Google Scholar 

  23. Dan M, Tseng MT, Wu P, Unrine JM, Grulke EA, Yokel RA (2012) Brain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial. Int J Nanomedicine 7:4023–4036

    Article  CAS  Google Scholar 

  24. Baghirov H, Karaman D, Viitala T, Duchanoy A, Lou Y-R, Mamaeva V, Pryazhnikov E, Khiroug L, de lange C, Sahlgren C, Rosenholm JM (2016) Feasibility study of the permeability and uptake of mesoporous silica nanoparticles across the blood-brain barrier. PLoS One 11:e0160705

    Article  Google Scholar 

  25. Wilhelm C, Gazeau F, Roger J, Pons JN, Bacri JC (2002) Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir 18:8148–8155

    Article  CAS  Google Scholar 

  26. Gao K, Jiang X (2006) Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharm 310:213–219

    Article  CAS  Google Scholar 

  27. Al Zaki A, Hui JZ, Higbee E, Tsourkas A (2015) Biodistribution, clearance, and toxicology of polymeric micelles loaded with 0.9 or 5 nm gold nanoparticles. J Biomed Nanotechnol 11:1836–1846

    Article  Google Scholar 

  28. Tsai Y-M, Chien C-F, Lin L-C, Tsai T-H (2011) Curcumin and its nano-formulation: the kinetics of tissue distribution and blood-brain barrier penetration. Int J Pharm 416:331–338

    Article  CAS  Google Scholar 

  29. Tröster SD, Müller U, Kreuter J (1990) Modification of the body distribution of poly(methyl methacrylate) nanoparticles in rats by coating with surfactants. Int J Pharm 61:85–100

    Article  Google Scholar 

  30. Fundarò A, Cavalli R, Bargoni A, Vighetto D, Zara GP, Gasco MR (2000) Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol Res 42:337–343

    Article  Google Scholar 

  31. Guerrero S, Araya E, Fiedler JL, Arias JI, Adura C, Albericio F, Giralt E, Arias JL, Fernandez MS, Kogan MJ (2010) Improving the brain delivery of gold nanoparticles by conjugation with an amphipathic peptide. Nanomedicine 5:897–913

    Article  CAS  Google Scholar 

  32. Wen Z, Yan Z, He R, Pang Z, Guo L, Qian Y, Jiang X, Fang L (2011) Brain targeting and toxicity study of odorranalectin-conjugated nanoparticles following intranasal administration. Drug Deliv 18:555–561

    Article  CAS  Google Scholar 

  33. Martins SM, Sarmento B, Nunes C, Lucio M, Reis S, Ferreira DC (2013) Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration. Eur J Pharm Biopharm 85:488–502

    Article  CAS  Google Scholar 

  34. Chen Y-S, Hung Y-C, Lin L-W, Liau I, Hong M-Y, Huang GS (2010) Size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles. Nanotechnology 21:485102

    Article  Google Scholar 

  35. Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, Oczkowski M, Krawczynska A, Chwastowska J, Sadowska-Bratek M, Chajduk E, Wojewodzka M, Dusinska M, Kruszewski M (2012) Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J Appl Toxicol 32:920–928

    Article  CAS  Google Scholar 

  36. Kafa H, Wang JT-W, Rubio N, Venner K, Anderson G, Pach E, Ballesteros B, Preston JE, Abbott NJ, Al-Jamal KT (2015) The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials 53:437–452

    Article  CAS  Google Scholar 

  37. Triguero D, Buciak J, Pardridge WM (1990) Capillary depletion method for quantification of blood-brain barrier transport of circulating peptides and plasma proteins. J Neurochem 54:1882–1888

    Article  CAS  Google Scholar 

  38. Takasato Y, Rapoport SI, Smith QR (1984) An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol 247:H484–H493

    CAS  PubMed  Google Scholar 

  39. Smith QR (1996) Brain perfusion systems for studies of drug uptake and metabolism in the central nervous system. Pharm Biotechnol 8:285–307

    Article  CAS  Google Scholar 

  40. Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560

    Article  Google Scholar 

  41. Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J, Li Y, Jiao F, Zhao Y, Chai Z (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185

    Article  CAS  Google Scholar 

  42. Nemmar A, Beegam S, Yuvaraju P, Yasin J, Shahin A, Ali BH (2014) Interaction of amorphous silica nanoparticles with erythrocytes in vitro: role of oxidative stress. Cell Physiol Biochem 34:255–265

    Article  CAS  Google Scholar 

  43. Antonelli A, Sfara C, Manuali E, Bruce IJ, Magnani M (2011) Encapsulation of superparamagnetic nanoparticles into red blood cells as new carriers of MRI contrast agents. Nanomedicine 6:211–223

    Article  CAS  Google Scholar 

  44. Crossgrove JS, Allen DD, Bukaveckas BL, Rhineheimer SS, Yokel RA (2003) Manganese distribution across the blood-brain barrier. I. Evidence for carrier-mediated influx of managanese citrate as well as manganese and manganese transferrin. Neurotoxicology 24:3–13

    Article  CAS  Google Scholar 

  45. Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768

    Article  CAS  Google Scholar 

  46. Crossgrove JS, Yokel RA (2004) Manganese distribution across the blood-brain barrier III. The divalent metal transporter-1 is not the major mechanism mediating brain manganese uptake. Neurotoxicology 25:451–460

    Article  CAS  Google Scholar 

  47. Paxinos G, Charles W (2013) The rat brain in stereotaxic coordinates, 7th edn. Academic Press, Cambridge, MA

    Google Scholar 

  48. Weyerbrock A, Walbridge S, Saavedra JE, Keefer LK, Oldfield EH (2011) Differential effects of nitric oxide on blood-brain barrier integrity and cerebral blood flow in intracerebral C6 gliomas. Neuro Oncol 13:203–211

    Article  CAS  Google Scholar 

  49. Blasberg RG, Fenstermacher JD, Patlak CS (1983) Transport of α-aminoisobutyric acid across brain capillary and cellular membranes. J Cereb Blood Flow Metab 3:8–32

    Article  CAS  Google Scholar 

  50. Alaofi A, On N, Kiptoo P, Williams TD, Miller DW, Siahaan TJ (2016) Comparison of linear and cyclic his-ala-val peptides in modulating the blood-brain barrier permeability: impact on delivery of molecules to the brain. J Pharm Sci 105:797–807

    Article  CAS  Google Scholar 

  51. Laksitorini MD, Kiptoo PK, On NH, Thliveris JA, Miller DW, Siahaan TJ (2015) Modulation of intercellular junctions by cyclic-ADT peptides as a method to reversibly increase blood-brain barrier permeability. J Pharm Sci 104:1065–1075

    Article  CAS  Google Scholar 

  52. Sisson WB, Oldendorf WH (1971) Brain distribution spaces of mannitol-3H, inulin-14C, and dextran-14C in the rat. Am J Physiol 221:214–217

    CAS  PubMed  Google Scholar 

  53. Hawkins BT, Egleton RD (2006) Fluorescence imaging of blood-brain barrier disruption. J Neurosci Methods 151:262–267

    Article  CAS  Google Scholar 

  54. Euser AG, Bullinger L, Cipolla MJ (2008) Magnesium sulphate treatment decreases blood-brain barrier permeability during acute hypertension in pregnant rats. Exp Physiol 93:254–261

    Article  CAS  Google Scholar 

  55. Smith QR, Ziylan YZ, Robinson PJ, Rapoport SI (1988) Kinetics and distribution volumes for tracers of different sizes in the brain plasma space. Brain Res 462:1–9

    Article  CAS  Google Scholar 

  56. Wolff CB, Sarker MH, Fraser PA (1995) Cerebral microvascular permeability and CSF pH in anaesthetized rats. Exp Physiol 80:1053–1055

    Article  CAS  Google Scholar 

  57. Miller RD, Monsul NT, Vender JR, Lehmann JC (1996) NMDA- and endothelin-1-induced increases in blood-brain barrier permeability quantitated with Lucifer yellow. J Neurol Sci 136:37–40

    Article  CAS  Google Scholar 

  58. Tabanor K, Lee P, Kiptoo P, Choi I-Y, Sherry EB, Eagle CS, Williams TD, Siahaan TJ (2016) Brain delivery of drug and MRI contrast agent: detection and quantitative determination of brain deposition of CPT-glu using LC-MS/MS and Gd-DTPA using magnetic resonance imaging. Mol Pharm 13:379–390

    Article  CAS  Google Scholar 

  59. Alyaudtin RN, Reichel A, Lobenberg R, Ramge P, Kreuter J, Begley DJ (2001) Interaction of poly(butyl cyanoacrylate) nanoparticles with the blood-brain barrier in vivo and in vitro. J Drug Target 9:209–221

    Article  CAS  Google Scholar 

  60. Carvey PM, Zhao CH, Hendey B, Lum H, Trachtenberg J, Desai BS, Snyder J, Zhu YG, Ling ZD (2005) 6-Hydroxydopamine-induced alterations in blood-brain barrier permeability. Eur J Neurosci 22:1158–1168

    Article  CAS  Google Scholar 

  61. Bertram KJ, Shipley MT, Ennis M, Sanberg PR, Norman AB (1994) Permeability of the blood-brain barrier within rat intrastriatal transplants assessed by simultaneous systemic injection of horseradish peroxidase and Evans blue dye. Exp Neurol 127:245–252

    Article  CAS  Google Scholar 

  62. Hoffmann A, Bredno J, Wendland M, Derugin N, Ohara P, Wintermark M (2011) High and low molecular weight fluorescein isothiocyanate (FITC)-dextrans to assess blood-brain barrier disruption: technical considerations. Transl Stroke Res 2:106–111

    Article  CAS  Google Scholar 

  63. Shim KH, Jeong K-H, Bae SO, Kang MO, Maeng EH, Choi CS, Kim Y-R, Hulme J, Lee EK, Kim M-K, An SSA (2014) Assessment of ZnO and SiO2 nanoparticle permeability through and toxicity to the blood-brain barrier using Evans blue and TEM. Int J Nanomedicine 9:225–233

    PubMed  PubMed Central  Google Scholar 

  64. Zhang J, Ke K-F, Liu Z, Qiu Y-H, Peng Y-P (2013) Th17 cell-mediated neuroinflammation is involved in neurodegeneration of Aβ1-42-induced Alzheimer’s disease model rats. PLoS One 8:e75786

    Article  CAS  Google Scholar 

  65. Michalski D, Grosche J, Pelz J, Schneider D, Weise C, Bauer U, Kacza J, Gaertner U, Hobohm C, Haertig W (2010) A novel quantification of blood-brain barrier damage and histochemical typing after embolic stroke in rats. Brain Res 1359:186–200

    Article  CAS  Google Scholar 

  66. Pinard E, Engrand N, Seylaz J (2000) Dynamic cerebral microcirculatory changes in transient forebrain ischemia in rats: involvement of type I nitric oxide synthase. J Cereb Blood Flow Metab 20:1648–1658

    Article  CAS  Google Scholar 

  67. Li Y, Xu L, Zeng K, Xu Z, Suo D, Peng L, Ren T, Sun Z, Yang W, Jin X, Yang L (2017) Propane-2-sulfonic acid octadec-9-enyl-amide, a novel PPARα/γ dual agonist, protects against ischemia-induced brain damage in mice by inhibiting inflammatory responses. Brain Behav Immun 66:289–301

    Article  CAS  Google Scholar 

  68. Jacob A, Hack B, Chiang E, Garcia JGN, Quigg RJ, Alexander JJ (2010) C5a alters blood-brain barrier integrity in experimental lupus. FASEB J 24:1682–1688

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Yokel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yokel, R.A. (2019). Methods to Quantify Nanomaterial Association with, and Distribution Across, the Blood–Brain Barrier In Vivo. In: Zhang, Q. (eds) Nanotoxicity. Methods in Molecular Biology, vol 1894. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8916-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8916-4_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8915-7

  • Online ISBN: 978-1-4939-8916-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics