Skip to main content

Artifacts and Practical Issues in Atomic Force Microscopy

  • Protocol
  • First Online:
Atomic Force Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1886))

Abstract

As with any other microscopic technique, in atomic force microscopy (AFM), problems can arise. Some of these happen due to improper use of the microscope by the operator, and some are due to particular characteristics of the sample. Some occur depending on the type of instrument, or from probe damage. Some of them are artifacts inherent in the technique. Knowledge of these issues is important for correct data acquisition and interpretation, and in many cases, training in AFM is inadequate. In this chapter we show examples of common artifacts in AFM and describe, where possible, how to overcome them. Other practical issues important for best practice in AFM operation, such as noise reduction and data processing, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michael Hollas J (2004) Modern spectroscopy. In: Modern spectroscopy. Wiley, Hoboken, NJ, p 41–71

    Google Scholar 

  2. Goldstein JI, Newbury DE, Michael JR et al (2017) Image defects. In: Scanning electron microscopy and X-ray microanalysis. Springer, New York, pp 133–146

    Google Scholar 

  3. Spence JCH, Spence RPPJCH, DeWitt BS (2003) High-resolution Electron Microscopy, 3rd edn. Oxford University Press, New York, pp 15–47

    Google Scholar 

  4. Nie H-Y, Walzak MJ, Mcintyre NSCN (2002) Use of biaxially oriented polypropylene film for evaluating and cleaning contaminated atomic force microscopy probe tips: an application to blind reconstruction. Rev Sci Instrum 73:3831–3836

    Article  CAS  Google Scholar 

  5. Eaton P. SPM. Standards and reference samples. In: AFMHelp.com. http://afmhelp.com/index.php?option=com_content&view=article&id=48&Itemid=54. Accessed 3 May 2018

  6. Ramirez-Aguilar KA, Rowlen KL (1998) Tip characterization from AFM images of nanometric spherical particles. Langmuir 14:2562–2566

    Article  CAS  Google Scholar 

  7. Bykov V, Gologanov A, Shevyakov V (1998) Test structure for SPM tip shape deconvolution. Appl Phys A Mater Sci Process 66:499–502

    Article  CAS  Google Scholar 

  8. Ho H, West P (1996) Optimizing AC-mode atomic force microscope imaging. Scanning 18:339–343

    Article  CAS  Google Scholar 

  9. Nie HY, McIntyre NS (2001) A simple and effective method of evaluating atomic force microscopy tip performance. Langmuir 17:432–436

    Article  CAS  Google Scholar 

  10. Sirghi L, Kylián O, Gilliland D et al (2006) Cleaning and hydrophilization of atomic force microscopy silicon probes. J Phys Chem B 110:25975–25981. https://doi.org/10.1021/JP063327G

    Article  CAS  PubMed  Google Scholar 

  11. Lo YS, Huefner ND, Chan WS et al (1999) Organic and inorganic contamination on commercial Afm cantilevers. Langmuir 15:6522–6526

    Article  CAS  Google Scholar 

  12. Nie H-Y, McIntyre NS (2007) Unstable amplitude and noisy image induced by tip contamination in dynamic force mode atomic force microscopy. Rev Sci Instrum 78:23701

    Article  CAS  Google Scholar 

  13. Chen Y, Cai JY, Liu ML et al (2004) Research on double-probe, double- and triple-tip effects during atomic force microscopy scanning. Scanning 26:155–161

    Article  CAS  Google Scholar 

  14. Gruber A, Gspann J, Hoffmann H (1999) Nanostructures produced by cluster beam lithography. Appl Phys A Mater Sci Process 68:197–201

    Article  CAS  Google Scholar 

  15. Eaton P, West P (2010) Chapter 2: instrumental aspects of AFM. In: Atomic force microscopy. Oxford University Press, Oxford, pp 9–48

    Chapter  Google Scholar 

  16. Eaton P, West P (2010) Appendix B: scanner calibration and certification procedures. In: Atomic force microscopy. Oxford University Press, Oxford, pp 192–197

    Chapter  Google Scholar 

  17. Russ JC (2006) Human vision. In: The image processing handbook, 5th edn. CRC Press, Boca Raton, p 83–134

    Google Scholar 

  18. Klapetek P (2012) 4.4.2 Data levelling and background extraction. In: Quantitative data processing in scanning probe microscopy: SPM applications. William Andrew, Norwich, NY, p 64–67

    Google Scholar 

  19. Eaton P, West P (2010) Atomic force microscopy. Oxford University Press, Oxford

    Book  Google Scholar 

  20. Eaton P, West P (2010) Processing AFM images. In: Atomic force microscopy, 1st edn. Oxford University Press, Oxford, p 104–109

    Chapter  Google Scholar 

  21. Eaton P, West P (2010) Substrates for AFM. In: Atomic force microscopy. Oxford University Press, Oxford, pp 87–88

    Chapter  Google Scholar 

  22. Chada N, Sigdel KP, Gari RRS et al (2015) Glass is a viable substrate for precision force microscopy of membrane proteins. Sci Rep 5:12550

    Article  CAS  Google Scholar 

  23. Wagner P (1998) Immobilization strategies for biological scanning probe microscopy. FEBS Lett 430:112–115

    Article  CAS  Google Scholar 

  24. Haugstad G (2012) Chapter 5: Probing material properties I: phase imaging. In: Atomic force microscopy: understanding basic modes and advanced applications. Wiley, Hoboken, NJ, p 187–257

    Google Scholar 

  25. Sang X, LeBeau JM (2014) Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge. Ultramicroscopy 138:28–35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by UCIBIO/REQUIMTE via grant UID/MULTI/04378/2013—POCI/01/0145/FERDER/007728 from FCT/MEC through national funds and co-financed by FEDER, under the Partnership Agreement PT2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Eaton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Eaton, P., Batziou, K. (2019). Artifacts and Practical Issues in Atomic Force Microscopy. In: Santos, N., Carvalho, F. (eds) Atomic Force Microscopy. Methods in Molecular Biology, vol 1886. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8894-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8894-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8893-8

  • Online ISBN: 978-1-4939-8894-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics