Skip to main content

Visualizing Bioactive Small Molecules by Alkyne Tagging and Slit-Scanning Raman Microscopy

  • Protocol
  • First Online:
Systems Chemical Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1888))

  • 2528 Accesses

Abstract

An understanding of the intracellular distribution of bioactive small molecules provides insight into their target organelles and biomolecules, and throws light on their molecular mechanisms of action and specificity. Many studies in this area have employed fluorescence imaging, using molecules of interest labeled with fluorescent dyes. However, modification with a bulky fluorophore may significantly alter the properties, including bioactivity, of small molecules. To address this issue, we have recently developed Raman scattering microscopy of alkyne tags to visualize small molecules in biological systems. The tiny alkyne tag should have a minimal effect on the properties of the tagged molecule, and the unique alkyne vibrational properties allow observation of the Raman signals of the tagged molecules in a wavelength region where there is little interference from Raman signals of endogenous biomolecules. Here we summarize the methodology for Raman imaging of alkyne-tagged bioactive small molecules in living biological systems including the development of slit-scanning Raman microscope, which is useful for fast imaging of alkyne-tagged molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parker FS (ed) (1983) Applications of Infrared, Raman, and Resonance Raman spectroscopy in biochemistry. Springer, Heidelberg

    Google Scholar 

  2. Carey P (1982) Biochemical applications of Raman and Resonance Raman spectroscopes. Academic Press, New York

    Google Scholar 

  3. Karthigeyan D, Siddhanta S, Kishore AH, Perumal SSRR, Ågren H, Sudevan S, Bhat AV, Balasubramanyam K, Subbegowda RK, Kundu TK, Narayana C (2014) SERS and MD simulation studies of a kinase inhibitor demonstrate the emergence of a potential drug discovery tool. Proc Natl Acad Sci U S A 111:10416–10421

    Article  CAS  PubMed Central  Google Scholar 

  4. Ando J, Asanuma M, Dodo K, Yamakoshi H, Kawata S, Fujita K, Sodeoka M (2016) Alkyne-tag SERS screening and identification of small-molecule-binding sites in protein. J Am Chem Soc 138:13901–13910

    Article  CAS  Google Scholar 

  5. Huang YS, Karashima T, Yamamoto M, Hamaguchi H (2003) Molecular-level pursuit of yeast mitosis by time- and space-resolved Raman spectroscopy. J Raman Spectrosc 34:1–3

    Article  CAS  Google Scholar 

  6. Palonpon AF, Ando J, Yamakoshi H, Dodo K, Sodeoka M, Kawata S, Fujita K (2013) Raman and SERS microscopy for molecular imaging of live cells. Nat Protoc 8:677–692

    Article  CAS  PubMed Central  Google Scholar 

  7. Ando J, Palonpon AF, Sodeoka M, Fujita K (2016) High-speed Raman imaging of cellular processes. Curr Opin Chem Biol 33:16–24

    Article  CAS  PubMed Central  Google Scholar 

  8. Hamada K, Fujita K, Smith NI, Kobayashi M, Inouye Y, Kawata S (2008) Raman microscopy for dynamic molecular imaging of living cells. J Biomed Opt 13:044027

    Article  PubMed Central  Google Scholar 

  9. Okada M, Smith NI, Palonpon AF, Endo H, Kawata S, Sodeoka M, Fujita K (2012) Label-free Raman observation of cytochrome c dynamic during apoptosis. Proc Natl Acad Sci U S A 109:28–32

    Article  CAS  PubMed Central  Google Scholar 

  10. Ling J, Weitman SD, Miller MA, Moore RV, Bovik AC (2002) Direct Raman imaging techniques for study of the subcellular distribution of a drug. Appl Opt 41:6006–6017

    Article  CAS  PubMed Central  Google Scholar 

  11. Yamakoshi H, Dodo K, Okada M, Ando J, Palonpon A, Fujita K, Kawata S, Sodeoka M (2011) Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy. J Am Chem Soc 133:6102–6105

    Article  CAS  PubMed Central  Google Scholar 

  12. Yamakoshi H, Dodo K, Palonpon A, Ando J, Fujita K, Kawata S, Sodeoka M (2012) Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells. J Am Chem Soc 134:20681–20689

    Article  CAS  PubMed Central  Google Scholar 

  13. Ando J, Kinoshita M, Cui J, Yamakoshi H, Dodo K, Fujita K, Murata M, Sodeoka M (2015) Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy. Proc Natl Acad Sci U S A 112:4558–4563

    Article  CAS  PubMed Central  Google Scholar 

  14. Lee J, Zhang W, Zhang D, Yang Y, Liu B, Barker EL, Buhman KK, Slipchenko LV, Dai M, Cheng JX (2015) Assessing cholesterol storage in live cells and C. elegans by stimulated Raman scattering imaging of phenyl-diyne cholesterol. Sci Rep 5:7930

    Article  CAS  PubMed Central  Google Scholar 

  15. Wei L, Hu F, Shen Y, Chen Z, Yu Y, Lin CC, Wang MC, Min W (2014) Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nat Methods 11:410–412

    Article  CAS  PubMed Central  Google Scholar 

  16. Hong S, Chen T, Zhu Y, Li A, Huang Y, Chen X (2014) Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules. Angew Chem Int Ed 53:5827–5831

    Article  CAS  Google Scholar 

  17. El-Mashtoly SF, Petersen D, Yosef HK, Mosig A, Reinacher-Schick A, Kötting C, Gerwert K (2014) Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy. Analyst 139:1155–1161

    Article  CAS  PubMed Central  Google Scholar 

  18. Yamakoshi H, Palonpon A, Dodo K, Ando J, Kawata S, Fujita K, Sodeoka M (2015) A sensitive and specific Raman probe based on bisarylbutadiyne for live cell imaging of mitochondria. Bioorg Med Chem Lett 25:664–667

    Article  CAS  PubMed Central  Google Scholar 

  19. Ueda M, Egoshi S, Dodo K, Ishimaru Y, Yamakoshi H, Nakano T, Takaoka Y, Tsukiji S, Sodeoka M (2017) Noncanonical function of a small-molecular virulence factor coronatine against plant immunity: an in vivo Raman imaging approach. ACS Cent Sci 3:462–472

    Article  CAS  PubMed Central  Google Scholar 

  20. Chen Z, Paley DW, Wei L, Weisman AL, Friesner RA, Nuckolls C, Min W (2014) Multicolor live-cell chemical imaging by isotopically edited alkyne vibrational palette. J Am Chem Soc 136:8027–8033

    Article  CAS  PubMed Central  Google Scholar 

  21. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed Central  Google Scholar 

  22. Manen HJ, Kraan YM, Roos D, Otto C (2004) Intracellular chemical imaging of heme containing enzymes involved in innate immunity using resonance Raman microscopy. J Phys Chem B 108:18762–18771

    Article  Google Scholar 

  23. Lieber CA, Mahadevan-Jansen A (2003) Automated method for subtraction of fluorescence from biological Raman spectra. Appl Spectrosc 57:1363–1367

    Article  CAS  PubMed Central  Google Scholar 

  24. Mu ZM, Le XF, Vallian S, Glassman AB, Chang KS (1997) Stable overexpression of PML alters regulation of cell cycle progression in HeLa cells. Carcinogenesis 18:2063–2069

    Article  CAS  PubMed Central  Google Scholar 

  25. Doucet H, Hierso J-C (2007) Palladium-Based Catalytic Systems for the Synthesis of Conjugated Enynes by Sonogashira Reactions and Related Alkynylations. Angew Chem Int Ed 46:834–871

    Article  CAS  Google Scholar 

  26. Shealy YF, O’Dell CA, Arnett G, Shannon WM (1986) Synthesis and antiviral activity of the carbocyclic analogues of 5-Ethyl-2′-deoxyuridine and of 5-Ethynyl-2′-deoxyuridine. J Med Chem 29:79–84

    Article  CAS  PubMed Central  Google Scholar 

  27. Siemsen P, Livingston RC, Diederich F (2000) Acetylenic coupling: a powerful tool in molecular construction. Angew Chem Int Ed 39:2632–2657

    Article  CAS  Google Scholar 

  28. Pietruszka J, Witt A (2006) Synthesis of the Bestmann-Ohira reagent. Synthesis 24:4266–4268

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by JST-ERATO (Sodeoka Live Cell Chemistry Project), AMED-CREST (No. JP17gm0710004), RIKEN and JSPS KAKENHI Grant Number 26600117 (J.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikiko Sodeoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ando, J., Dodo, K., Fujita, K., Sodeoka, M. (2019). Visualizing Bioactive Small Molecules by Alkyne Tagging and Slit-Scanning Raman Microscopy. In: Ziegler, S., Waldmann, H. (eds) Systems Chemical Biology. Methods in Molecular Biology, vol 1888. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8891-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8891-4_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8890-7

  • Online ISBN: 978-1-4939-8891-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics