Skip to main content

Notch in Lung Cancer

  • Chapter
  • First Online:
Targeting Notch in Cancer

Abstract

Lung cancer is the deadliest malignancy in the world. The Notch signaling pathway plays an important role in both normal lung development and the pathobiology of lung cancer. By understanding the function of the Notch pathway in normal development, we can begin to appreciate the intricate role that it plays in lung cancer. The complexity of Notch signaling includes multiple Notch receptors and ligands, posttranslational modifications affecting Notch receptor function, and significant cross talk with other signaling pathways. Dysregulation of the Notch signaling pathway occurs in every type of lung cancer, but the specific role of the Notch pathway in the different subtypes of lung cancer is still unclear. There is evidence that Notch can act in a pro-tumorigenic manner under some circumstances and in an anti-tumorigenic manner under others. Notch can facilitate tumor growth and proliferation, apoptosis, cell differentiation, survival, immune response, angiogenesis, cancer stem cell biology, and chemoresistance. Understanding how Notch naturally usurps these mechanisms to promote or suppress tumors can provide new insights regarding therapeutic intervention while minimizing toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Radtke, F., Schweisguth, F., & Pear, W. (2005). The Notch ‘gospel’. EMBO Reports, 6(12), 1120–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gazave, E., et al. (2009). Origin and evolution of the Notch signalling pathway: An overview from eukaryotic genomes. BMC Evolutionary Biology, 9(1), 249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Aster, J. C., Pear, W. S., & Blacklow, S. C. (2017). The varied roles of notch in cancer. Annual Review of Pathology: Mechanisms of Disease, 12, 245–275.

    Article  CAS  Google Scholar 

  4. Leiserson, M. D., et al. (2015). Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nature Genetics, 47(2), 106–114.

    Article  CAS  PubMed  Google Scholar 

  5. George, J., et al. (2015). Comprehensive genomic profiles of small cell lung cancer. Nature, 524(7563), 47–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Westhoff, B., et al. (2009). Alterations of the Notch pathway in lung cancer. Proceedings of the National Academy of Sciences, 106(52), 22293–22298.

    Article  CAS  Google Scholar 

  7. Capaccione, K. M., & Pine, S. R. (2013). The Notch signaling pathway as a mediator of tumor survival. Carcinogenesis, 34(7), 1420–1430. p. bgt127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Donnem, T., et al. (2010). Prognostic impact of Notch ligands and receptors in nonsmall cell lung cancer. Cancer, 116(24), 5676–5685.

    Article  PubMed  Google Scholar 

  9. Baumgart, A., et al. (2015). Opposing role of Notch1 and Notch2 in a Kras G12D-driven murine non-small cell lung cancer model. Oncogene, 34(5), 578.

    Article  CAS  PubMed  Google Scholar 

  10. Licciulli, S., et al. (2013). Notch1 is required for Kras-induced lung adenocarcinoma and controls tumor cell survival via p53. Cancer Research, 73(19), 5974–5984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu, X., et al. (2014). The cell of origin and subtype of K-Ras-induced lung tumors are modified by Notch and Sox2. Genes & Development, 28(17), 1929–1939.

    Article  CAS  Google Scholar 

  12. Duan, L., et al. (2006). Growth suppression induced by Notch1 activation involves Wnt—β-catenin down-regulation in human tongue carcinoma cells. Biology of the Cell, 98(8), 479–490.

    Article  CAS  PubMed  Google Scholar 

  13. Radtke, F., Fasnacht, N., & MacDonald, H. R. (2010). Notch signaling in the immune system. Immunity, 32(1), 14–27.

    Article  CAS  PubMed  Google Scholar 

  14. Nicolas, M., et al. (2003). Notch1 functions as a tumor suppressor in mouse skin. Nature Genetics, 33(3), 416–421.

    Article  CAS  PubMed  Google Scholar 

  15. Leong, K. G., & Karsan, A. (2006). Recent insights into the role of Notch signaling in tumorigenesis. Blood, 107(6), 2223–2233.

    Article  CAS  PubMed  Google Scholar 

  16. Espinoza, I., & Miele, L. (2013). Notch inhibitors for cancer treatment. Pharmacology & Therapeutics, 139(2), 95–110.

    Article  CAS  Google Scholar 

  17. Stanley, P., & Okajima, T. (2010). Chapter four-roles of glycosylation in Notch signaling. Current Topics in Developmental Biology, 92, 131–164.

    Article  CAS  PubMed  Google Scholar 

  18. Shi, S., & Stanley, P. (2003). Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5234–5239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fernandez-Valdivia, R., et al. (2011). Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development, 138(10), 1925–1934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takeuchi, H., & Haltiwanger, R. S. (2014). Significance of glycosylation in Notch signaling. Biochemical and Biophysical Research Communications, 453(2), 235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Andersson, E. R., & Lendahl, U. (2014). Therapeutic modulation of Notch signalling [mdash] are we there yet? Nature Reviews. Drug Discovery, 13(5), 357–378.

    Article  CAS  PubMed  Google Scholar 

  22. Le Bras, S., Loyer, N., & Le Borgne, R. (2011). The multiple facets of ubiquitination in the regulation of notch signaling pathway. Traffic, 12(2), 149–161.

    Article  PubMed  CAS  Google Scholar 

  23. O’Neil, J., et al. (2007). FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. The Journal of Experimental Medicine, 204(8), 1813–1824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Matsuno, K., et al. (2002). Involvement of a proline-rich motif and RING-H2 finger of Deltex in the regulation of Notch signaling. Development, 129(4), 1049–1059.

    CAS  PubMed  Google Scholar 

  25. Matsuno, K., et al. (1995). Deltex acts as a positive regulator of Notch signaling through interactions with the Notch ankyrin repeats. Development, 121(8), 2633–2644.

    CAS  PubMed  Google Scholar 

  26. Espinosa, L., et al. (2003). Phosphorylation by glycogen synthase kinase-3β down-regulates Notch activity, a link for Notch and Wnt pathways. Journal of Biological Chemistry, 278(34), 32227–32235.

    Article  CAS  Google Scholar 

  27. McGill, M. A., & McGlade, C. J. (2003). Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. Journal of Biological Chemistry, 278(25), 23196–23203.

    Article  CAS  Google Scholar 

  28. Housden, B. E., et al. (2013). Transcriptional dynamics elicited by a short pulse of notch activation involves feed-forward regulation by E (spl)/Hes genes. PLoS Genetics, 9(1), e1003162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lamar, E., et al. (2001). Nrarp is a novel intracellular component of the Notch signaling pathway. Genes & Development, 15(15), 1885–1899.

    Article  CAS  Google Scholar 

  30. Yi, F., Amarasinghe, B., & Dang, T. P. (2013). Manic fringe inhibits tumor growth by suppressing Notch3 degradation in lung cancer. American Journal of Cancer Research, 3(5), 490–499.

    PubMed  PubMed Central  Google Scholar 

  31. Tsao, P.-N., et al. (2008). γ-secretase activation of Notch signaling regulates the balance of proximal and distal fates in progenitor cells of the developing lung. Journal of Biological Chemistry, 283(43), 29532–29544.

    Article  CAS  Google Scholar 

  32. Kong, Y., et al. (2004). Functional diversity of notch family genes in fetal lung development. American Journal of Physiology-Lung Cellular and Molecular Physiology, 286(5), L1075–L1083.

    Article  CAS  PubMed  Google Scholar 

  33. Morimoto, M., et al. (2010). Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. Journal of Cell Science, 123(2), 213–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morimoto, M., et al. (2012). Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development (Cambridge, England), 139(23), 4365–4373.

    Article  CAS  Google Scholar 

  35. Ito, T., et al. (2000). Basic helix-loop-helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development, 127(18), 3913–3921.

    CAS  PubMed  Google Scholar 

  36. Zhang, S., et al. (2013). Jagged1 is the major regulator of notch-dependent cell fate in proximal airways. Developmental Dynamics, 242(6), 678–686.

    Article  CAS  PubMed  Google Scholar 

  37. Lafkas, D., et al. (2015). Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung. Nature, 528(7580), 127–131.

    CAS  PubMed  Google Scholar 

  38. Chapman, G., et al. (2011). Notch inhibition by the ligand DELTA-LIKE 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Human Molecular Genetics, 20(5), 905–916.

    Article  CAS  PubMed  Google Scholar 

  39. Serth, K., et al. (2015). O-fucosylation of DLL3 is required for its function during somitogenesis. PLoS One, 10(4), e0123776.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Henke, R. M., et al. (2009). Ascl1 and Neurog2 form novel complexes and regulate Delta-like3 (Dll3) expression in the neural tube. Developmental Biology, 328(2), 529–540.

    Article  CAS  PubMed  Google Scholar 

  41. Augustyn, A., et al. (2014). ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers. Proceedings of the National Academy of Sciences, 111(41), 14788–14793.

    Article  CAS  Google Scholar 

  42. Saunders, L. R., et al. (2015). A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Science Translational Medicine, 7(302), 302ra136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Guseh, J. S., et al. (2009). Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development, 136(10), 1751–1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu, K., et al. (2010). Lunatic Fringe-mediated Notch signaling is required for lung alveogenesis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 298(1), L45–L56.

    Article  CAS  PubMed  Google Scholar 

  45. Dang, T. P., et al. (2003). Constitutive activation of Notch3 inhibits terminal epithelial differentiation in lungs of transgenic mice. Oncogene, 22(13), 1988–1997.

    Article  CAS  PubMed  Google Scholar 

  46. Carraro, G., & Stripp, B. R. (2015). A new Notch for lung stem cells. Cell Stem Cell, 16(2), 107–109.

    Article  CAS  PubMed  Google Scholar 

  47. Pardo-Saganta, A., et al. (2015). Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations. Cell Stem Cell, 16(2), 184–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vaughan, A. E., et al. (2015). Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature, 517(7536), 621–625.

    Article  CAS  PubMed  Google Scholar 

  49. Randell, S. H. (2006). Airway epithelial stem cells and the pathophysiology of chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 3(8), 718–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rock, J. R., Randell, S. H., & Hogan, B. L. (2010). Airway basal stem cells: A perspective on their roles in epithelial homeostasis and remodeling. Disease Models & Mechanisms, 3(9–10), 545–556.

    Article  CAS  Google Scholar 

  51. Shi, W., Chen, F., & Cardoso, W. V. (2009). Mechanisms of lung development: Contribution to adult lung disease and relevance to chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 6(7), 558–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Custodio, A., & Barriuso, J. (2014). What is the meaning of notch pathway and how can we selectively do the targeting? In Stem cells in Cancer: Should we believe or not? (pp. 23–65). Dordrecht: Springer.

    Chapter  Google Scholar 

  53. Dang, T. P., et al. (2000). Chromosome 19 translocation, overexpression of Notch3, and human lung cancer. Journal of the National Cancer Institute, 92(16), 1355–1357.

    Article  CAS  PubMed  Google Scholar 

  54. Sriuranpong, V., et al. (2001). Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Research, 61(7), 3200–3205.

    CAS  PubMed  Google Scholar 

  55. Lim, J. S., et al. (2017). Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature, 545(7654), 360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Allen, T. D., et al. (2011). Activated Notch1 induces lung adenomas in mice and cooperates with Myc in the generation of lung adenocarcinoma. Cancer Research, 71(18), 6010–6018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, Y., et al. (2014). Integrative and comparative genomic analysis of lung squamous cell carcinomas in East Asian patients. Journal of Clinical Oncology, 32(2), 121–128.

    Article  CAS  PubMed  Google Scholar 

  58. Brooks, Y. S., et al. (2014). Multifactorial ERβ and NOTCH1 control of squamous differentiation and cancer. The Journal of Clinical Investigation, 124(5), 2260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hassan, W. A., et al. (2016). Evaluation of role of Notch3 signaling pathway in human lung cancer cells. Journal of Cancer Research and Clinical Oncology, 142(5), 981–993.

    Article  CAS  PubMed  Google Scholar 

  60. Konishi, J., et al. (2007). γ-Secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Research, 67(17), 8051–8057.

    Article  CAS  PubMed  Google Scholar 

  61. Haruki, N., et al. (2005). Dominant-negative Notch3 receptor inhibits mitogen-activated protein kinase pathway and the growth of human lung cancers. Cancer Research, 65(9), 3555–3561.

    Article  CAS  PubMed  Google Scholar 

  62. Gordian, E., et al. (2017). Novel oncogenic function of Notch4 in Hispanic lung cancer. In AACR. Proceedings: AACR annual meeting 2017. Washington, DC.: http://cancerres.aacrjournals.org/content/77/13_Supplement/4456.short.

  63. Cerami, E., et al. (2012). The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2, 401–404. https://doi.org/10.1158/2159-8290.CD-12-0095. PubMed: 22588877.

    Article  PubMed  Google Scholar 

  64. Gao, J., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling, 6(269), pl1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ding, L., et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 455(7216), 1069–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Network, C. G. A. R. (2012). Comprehensive genomic characterization of squamous cell lung cancers. Nature, 489(7417), 519–525.

    Article  CAS  Google Scholar 

  67. Barse, L., & Bocchetta, M. (2015). Non-small-cell lung carcinoma: Role of the Notch signaling pathway. Lung Cancer (Auckl), 6, 43–53.

    CAS  Google Scholar 

  68. Society, A. C. Lung cancer (Non-Small Cell): What is non-small cell lung cancer. 2016 03/04/2015 12 January 2016]. Available from: http://www.cancer.org/cancer/lungcancer-non-smallcell/detailedguide/non-small-cell-lung-cancer-what-is-non-small-cell-lung-cancer.

  69. van Meerbeeck, J. P., Fennell, D. A., & De Ruysscher, D. K. (2011). Small-cell lung cancer. The Lancet, 378(9804), 1741–1755.

    Article  Google Scholar 

  70. Kunnimalaiyaan, M., & Chen, H. (2007). Tumor suppressor role of Notch-1 signaling in neuroendocrine tumors. The Oncologist, 12(5), 535–542.

    Article  CAS  PubMed  Google Scholar 

  71. Sriuranpong, V., et al. (2002). Notch signaling induces rapid degradation of achaete-scute homolog 1. Molecular and Cellular Biology, 22(9), 3129–3139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rudin, C. M., et al. (2012). Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nature Genetics, 44(10), 1111–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Peifer, M., et al. (2012). Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nature Genetics, 44(10), 1104–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, N. J., et al. (2011). Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proceedings of the National Academy of Sciences, 108(43), 17761–17766.

    Article  CAS  Google Scholar 

  75. Agrawal, N., et al. (2011). Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science, 333(6046), 1154–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stransky, N., et al. (2011). The mutational landscape of head and neck squamous cell carcinoma. Science, 333(6046), 1157–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Guo, L., et al. (2015). Roles of NOTCH1 as a therapeutic target and a biomarker for lung cancer: Controversies and perspectives. Disease Markers, 2015, 520590.

    PubMed  PubMed Central  Google Scholar 

  78. Yuan, X., et al. (2015). Meta-analysis reveals the correlation of Notch signaling with non-small cell lung cancer progression and prognosis. Scientific Reports, 5, 10338.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jiang, X., et al. (2007). Expression and significance of Notch1, Jagged1 and VEGF in human non-small cell lung cancer. Zhong nan da xue xue bao. Yi xue ban= Journal of Central South University. Medical Sciences, 32(6), 1031–1036.

    CAS  PubMed  Google Scholar 

  80. Andersen, S., et al. (2011). Correlation and coexpression of HIFs and NOTCH markers in NSCLC. Anticancer Research, 31(5), 1603–1606.

    CAS  PubMed  Google Scholar 

  81. Mariscal, J., et al. (2016). Molecular profiling of circulating tumour cells identifies notch1 as a principal regulator in advanced non-small cell lung cancer. Scientific Reports, 6, 37820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen, C.-Y., et al. (2017). Expression of notch gene and its impact on survival of patients with resectable non-small cell lung cancer. Journal of Cancer, 8(7), 1292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Sherry, S. T., et al. (2001). dbSNP: The NCBI database of genetic variation. Nucleic Acids Research, 29(1), 308–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bollig-Fischer, A., et al. (2015). Racial diversity of actionable mutations in non–small cell lung cancer. Journal of Thoracic Oncology, 10(2), 250–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee, S. Y., et al. (2017). A functional polymorphism in DTX1 gene of notch pathway predicts the prognosis of surgically resected non-small cell lung cancer. AACR Proceedings: AACR annual meeting 2017; Washington, DC http://cancerres.aacrjournals.org/content/77/13_Supplement/5727.short.

  86. Quan, X., et al. (2017). Single nucleotide polymorphism rs3124599 in Notch1 is associated with the risk of lung cancer in northeast Chinese non-smoking females. Oncotarget, 8(19), 31180.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Xu, K., Moghal, N., & Egan, S. E. (2012). Notch signaling in lung development and disease. In Notch signaling in embryology and Cancer (pp. 89–98). Springer, New York, NY.

    Google Scholar 

  88. Zheng, Y., et al. (2013). A rare population of CD24+ ITGB4+ Notch hi cells drives tumor propagation in NSCLC and requires Notch3 for self-renewal. Cancer Cell, 24(1), 59–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Arasada, R. R., et al. (2014). EGFR blockade enriches for lung cancer stem–like cells through Notch3-dependent signaling. Cancer Research, 74(19), 5572–5584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Justilien, V., et al. (2012). Matrix metalloproteinase-10 is required for lung cancer stem cell maintenance, tumor initiation and metastatic potential. PLoS One, 7(4), e35040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lefort, K., & Dotto, G. P. (2004). Notch signaling in the integrated control of keratinocyte growth/differentiation and tumor suppression. Seminars in Cancer Biology, 14 (5), 374–386. Academic Press.

    Google Scholar 

  92. Lowell, S., et al. (2000). Stimulation of human epidermal differentiation by Delta–Notch signalling at the boundaries of stem-cell clusters. Current Biology, 10(9), 491–500.

    Article  CAS  PubMed  Google Scholar 

  93. Rangarajan, A., et al. (2001). Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. The EMBO Journal, 20(13), 3427–3436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, L., Sheehan, C., & Ross, J. (2009). Notch signaling in non small cell lung cancers (NSCLC) is associated with squamous differentiation and favorable clinical outcome. Laboratory Investigation. Nature Publishing Group 75 varick st, 9TH FLR, New York, NY 10013-1917 USA.

    Google Scholar 

  95. Schwartz, A. G., et al. (2007). Reproductive factors, hormone use, estrogen receptor expression and risk of non–small-cell lung cancer in women. Journal of Clinical Oncology, 25(36), 5785–5792.

    Article  PubMed  Google Scholar 

  96. Schwartz, A. G., et al. (2005). Nuclear estrogen receptor β in lung cancer: Expression and survival differences by sex. Clinical Cancer Research, 11(20), 7280–7287.

    Article  CAS  PubMed  Google Scholar 

  97. Skov, B. G., Fischer, B. M., & Pappot, H. (2008). Oestrogen receptor β over expression in males with non-small cell lung cancer is associated with better survival. Lung Cancer, 59(1), 88–94.

    Article  PubMed  Google Scholar 

  98. Zhang, M., et al. (2016). Does Notch play a tumor suppressor role across diverse squamous cell carcinomas? Cancer Medicine, 5(8), 2048–2060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wael, H., et al. (2014). Notch1 signaling controls cell proliferation, apoptosis and differentiation in lung carcinoma. Lung Cancer, 85(2), 131–140.

    Article  PubMed  Google Scholar 

  100. Zheng, Q., et al. (2007). Notch signaling inhibits growth of the human lung adenocarcinoma cell line A549. Oncology Reports, 17(4), 847–852.

    CAS  PubMed  Google Scholar 

  101. Baumgart, A., et al. (2010). ADAM17 regulates epidermal growth factor receptor expression through the activation of Notch1 in non–small cell lung cancer. Cancer Research, 70(13), 5368–5378.

    Article  CAS  PubMed  Google Scholar 

  102. Meng, X., & Yu, J. (2012). Implementation of hypoxia measurement into lung cancer therapy. Lung Cancer, 75(2), 146–150.

    Article  PubMed  Google Scholar 

  103. Graves, E. E., et al. (2010). Hypoxia in models of lung cancer: Implications for targeted therapeutics. Clinical Cancer Research, 16(19), 4843–4852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Le, Q.-T., et al. (2006). An evaluation of tumor oxygenation and gene expression in patients with early stage non–small cell lung cancers. Clinical Cancer Research, 12(5), 1507–1514.

    Article  CAS  PubMed  Google Scholar 

  105. Graves, E. E., Maity, A., & Le, Q.-T. (2010). The tumor microenvironment in non–small-cell lung cancer. Seminars in Radiation Oncology, 20(3), 156–163. WB Saunders.

    Google Scholar 

  106. Mees, G., et al. (2009). Molecular imaging of hypoxia with radiolabelled agents. European Journal of Nuclear Medicine and Molecular Imaging, 36(10), 1674–1686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vikram, D. S., Zweier, J. L., & Kuppusamy, P. (2007). Methods for noninvasive imaging of tissue hypoxia. Antioxidants & Redox Signaling, 9(10), 1745–1756.

    Article  CAS  Google Scholar 

  108. Chen, Y., et al. (2007). Oxygen concentration determines the biological effects of NOTCH-1 signaling in adenocarcinoma of the lung. Cancer Research, 67(17), 7954–7959.

    Article  CAS  PubMed  Google Scholar 

  109. Gustafsson, M. V., et al. (2005). Hypoxia requires notch signaling to maintain the undifferentiated cell state. Developmental Cell, 9(5), 617–628.

    Article  CAS  PubMed  Google Scholar 

  110. Eliasz, S., et al. (2010). Notch-1 stimulates survival of lung adenocarcinoma cells during hypoxia by activating the IGF-1R pathway. Oncogene, 29(17), 2488–2498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Han, Y. H., et al. (2008). Antimycin A as a mitochondrial electron transport inhibitor prevents the growth of human lung cancer A549 cells. Oncology Reports, 20(3), 689–693.

    CAS  PubMed  Google Scholar 

  112. Goodwin, J., et al. (2017). The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition. Nature Communications, 8, 15503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Peiris-Pagès, M., et al. (2016). Cancer stem cell metabolism. Breast Cancer Research, 18(1), 55.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  114. Mazzone, M., et al. (2010). Dose-dependent induction of distinct phenotypic responses to Notch pathway activation in mammary epithelial cells. Proceedings of the National Academy of Sciences, 107(11), 5012–5017.

    Article  CAS  Google Scholar 

  115. Miele, L., Golde, T., & Osborne, B. (2006). Notch signaling in cancer. Current Molecular Medicine, 6(8), 905–918.

    Article  CAS  PubMed  Google Scholar 

  116. Bachireddy, P., Rakhra, K., & Felsher, D. (2012). Immunology in the clinic review series; focus on cancer: Multiple roles for the immune system in oncogene addiction. Clinical & Experimental Immunology, 167(2), 188–194.

    Article  CAS  Google Scholar 

  117. Rakhra, K., et al. (2010). CD4+ T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell, 18(5), 485–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Odunsi, K., & Old, L. J. (2007). Tumor infiltrating lymphocytes: Indicators of tumor-related immune responses. Cancer Immunity., 7(3). http://cancerimmunolres.aacrjournals.org/content/canimmarch/7/1/3.full-text.pdf.

  119. Bailis, W., et al. (2013). Notch simultaneously orchestrates multiple helper T cell programs independently of cytokine signals. Immunity, 39(1), 148–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Xu, H., et al. (2012). Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nature Immunology, 13(7), 642–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xu, J., et al. (2015). NOTCH reprograms mitochondrial metabolism for proinflammatory macrophage activation. The Journal of Clinical Investigation, 125(4), 1579.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sauma, D., et al. (2012). Notch signalling regulates cytokine production by CD8+ and CD4+ T cells. Scandinavian Journal of Immunology, 75(4), 389–400.

    Article  CAS  PubMed  Google Scholar 

  123. Kassner, N., et al. (2010). Cutting edge: Plasmacytoid dendritic cells induce IL-10 production in T cells via the Delta-like-4/Notch axis. The Journal of Immunology, 184(2), 550–554.

    Article  CAS  PubMed  Google Scholar 

  124. Yvon, E. S., et al. (2003). Overexpression of the Notch ligand, Jagged-1, induces alloantigen-specific human regulatory T cells. Blood, 102(10), 3815–3821.

    Article  CAS  PubMed  Google Scholar 

  125. Delaney, C., et al. (2005). Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood, 106(8), 2693–2699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dorsch, M., et al. (2002). Ectopic expression of Delta4 impairs hematopoietic development and leads to lymphoproliferative disease. Blood, 100(6), 2046–2055.

    CAS  PubMed  Google Scholar 

  127. Koch, U., et al. (2008). Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. The Journal of Experimental Medicine, 205(11), 2515–2523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Huang, Y., et al. (2011). Resuscitating cancer immunosurveillance: Selective stimulation of DLL1-Notch signaling in T cells rescues T cell function and inhibits tumor growth. Cancer Research, 71(19), 6122–6131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shanker, A., et al. (2014). Cancer therapy by resuscitating Notch immune surveillance. Journal for Immunotherapy of Cancer, 2(Suppl 1), O1.

    Article  PubMed Central  Google Scholar 

  130. Ladi, E., et al. (2005). The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. The Journal of Cell Biology, 170(6), 983–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Amsen, D., Antov, A., & Flavell, R. A. (2009). The different faces of Notch in T-helper-cell differentiation. Nature Reviews. Immunology, 9(2), 116–124.

    Article  CAS  PubMed  Google Scholar 

  132. Keerthivasan, S., Suleiman, R., Lawlor, R., Roderick, J., Bates, T., Minter, L., … & Miele, L. (2011). Notch signaling regulates mouse and human Th17 differentiation. The Journal of Immunology, 1003658.

    Google Scholar 

  133. Sierra, R. A., et al. (2014). Rescue of Notch 1 signaling in antigen-specific CD8+ T cells overcomes tumor-induced T cell suppression and enhances immunotherapy in cancer. Cancer Immunology Research, 2(8), 800–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Radtke, F., et al. (1999). Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity, 10(5), 547–558.

    Article  CAS  PubMed  Google Scholar 

  135. Pear, W. S., et al. (1996). Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. The Journal of Experimental Medicine, 183(5), 2283–2291.

    Article  CAS  PubMed  Google Scholar 

  136. Biktasova, A. K., et al. (2015). Multivalent forms of the Notch ligand DLL-1 enhance antitumor T cell immunity in lung cancer and improve efficacy of EGFR targeted therapy. Cancer Research: p. canres. 1154.2014.

    Google Scholar 

  137. Mathieu, M., et al. (2013). Notch signaling regulates PD-1 expression during CD8+ T-cell activation. Immunology and Cell Biology, 91(1), 82–88.

    Article  CAS  PubMed  Google Scholar 

  138. Srivastava, M., et al. (2015). Dual targeting of delta-like ligand 4 (DLL4) and programmed death 1 (PD1) inhibits tumor growth and generates enhanced long-term immunological memory. Cancer Research, 75(15 Suppl), 255–255.

    Article  Google Scholar 

  139. Tran, I. T., et al. (2013). Blockade of individual Notch ligands and receptors controls graft-versus-host disease. The Journal of Clinical Investigation, 123(4), 1590–1604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fasnacht, N., et al. (2014). Specific fibroblastic niches in secondary lymphoid organs orchestrate distinct Notch-regulated immune responses. Journal of Experimental Medicine, 211(11), 2265–2279.

    Article  Google Scholar 

  141. Rizzo, P., et al. (2008). Rational targeting of Notch signaling in cancer. Oncogene, 27(38), 5124–5131.

    Article  CAS  PubMed  Google Scholar 

  142. Ranganathan, P., Weaver, K. L., & Capobianco, A. J. (2011). Notch signalling in solid tumours: A little bit of everything but not all the time. Nature Reviews Cancer, 11(5), 338–351.

    Article  CAS  PubMed  Google Scholar 

  143. Paris, D., et al. (2005). Inhibition of angiogenesis and tumor growth by β and γ-secretase inhibitors. European Journal of Pharmacology, 514(1), 1–15.

    Article  CAS  PubMed  Google Scholar 

  144. Maraver, A., et al. (2012). Therapeutic effect of γ-secretase inhibition in Kras G12V-driven non-small cell lung carcinoma by derepression of DUSP1 and inhibition of ERK. Cancer Cell, 22(2), 222–234.

    Article  CAS  PubMed  Google Scholar 

  145. Hayashi, I., et al. (2012). Neutralization of the γ-secretase activity by monoclonal antibody against extracellular domain of nicastrin. Oncogene, 31(6), 787–798.

    Article  CAS  PubMed  Google Scholar 

  146. Ridgway, J., et al. (2006). Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature, 444(7122), 1083–1087.

    Article  CAS  PubMed  Google Scholar 

  147. Yan, M., et al. (2010). Chronic DLL4 blockade induces vascular neoplasms. Nature, 463(7282), E6–E7.

    Article  CAS  PubMed  Google Scholar 

  148. Wu, Y., et al. (2010). Therapeutic antibody targeting of individual Notch receptors. Nature, 464(7291), 1052–1057.

    Article  CAS  PubMed  Google Scholar 

  149. Nickoloff, B. J., Osborne, B. A., & Miele, L. (2003). Notch signaling as a therapeutic target in cancer: A new approach to the development of cell fate modifying agents. Oncogene, 22(42), 6598–6608.

    Article  CAS  PubMed  Google Scholar 

  150. Kopan, R., & Ilagan, M. X. G. (2004). γ-secretase: Proteasome of the membrane? Nature Reviews Molecular Cell Biology, 5(6), 499–504.

    Article  CAS  PubMed  Google Scholar 

  151. Maetzel, D., et al. (2009). Nuclear signalling by tumour-associated antigen EpCAM. Nature Cell Biology, 11(2), 162–171.

    Article  CAS  PubMed  Google Scholar 

  152. Takebe, N., Nguyen, D., & Yang, S. X. (2014). Targeting notch signaling pathway in cancer: Clinical development advances and challenges. Pharmacology & Therapeutics, 141(2), 140–149.

    Article  CAS  Google Scholar 

  153. Konishi, J., et al. (2010). Notch3 cooperates with the EGFR pathway to modulate apoptosis through the induction of bim. Oncogene, 29(4), 589–596.

    Article  CAS  PubMed  Google Scholar 

  154. Kaur, G., et al. (2016). Bromodomain and hedgehog pathway targets in small cell lung cancer. Cancer Letters, 371(2), 225–239.

    Article  CAS  PubMed  Google Scholar 

  155. Ambrogio, C., et al. (2016). Combined inhibition of DDR1 and Notch signaling is a therapeutic strategy for KRAS-driven lung adenocarcinoma. Nature Medicine, 22(3), 270.

    Article  CAS  PubMed  Google Scholar 

  156. Gold, K. A., et al. (2013). A phase I/II trial combining erlotinib with gamma secretase inhibitor RO4929097 in advanced non-small cell lung cancer (NSCLC). Journal of Clinical Oncology. American Society of Clinical Oncology 2318 MILL ROAD, STE 800, ALEXANDRIA, VA 22314 USA.

    Google Scholar 

  157. Luistro, L., et al. (2009). Preclinical profile of a potent γ-secretase inhibitor targeting notch signaling with in vivo efficacy and pharmacodynamic properties. Cancer Research, 69(19), 7672–7680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. De Strooper, B., Iwatsubo, T., & Wolfe, M. S. (2012). Presenilins and γ-secretase: Structure, function, and role in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(1), a006304.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Yan, M. (2011). Therapeutic promise and challenges of targeting DLL4/NOTCH1. Vascular Cell, 3, 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Li, D., et al. (2014). The notch ligand JAGGED1 as a target for anti-tumor therapy. Frontiers in Oncology, 4, 254.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Alketbi, A., & Attoub, S. (2015). Notch signaling in cancer: Rationale and strategies for targeting. Current Cancer Drug Targets, 15(5), 364–374.

    Article  CAS  PubMed  Google Scholar 

  162. Chiorean, E. G., et al. (2015). A phase I first-in-human study of enoticumab (REGN421), a fully human Delta-like ligand 4 (Dll4) monoclonal antibody in patients with advanced solid tumors. Clinical Cancer Research, 21(12), 2695–2703.

    Article  CAS  PubMed  Google Scholar 

  163. Brunner, A., et al. (2016). Effects of anti-DLL4 treatment on non-small cell lung cancer (NSCLC) human xenograft tumors. AACR. (http://cancerres.aacrjournals.org/content/76/14_Supplement/4652.short) Proceedings: AACR 107th Annual Meeting 2016; April 16–20, 2016; New Orleans, LA.

  164. Globenewswire.com. (2015). Oncomed presents demcizumab data from phase 1B clinical trial in non-small cell lung cancer patients at the European lucg cancer conference. Available from: http://globenewswire.com/news-release/2015/04/16/725132/10129223/en/OncoMed-Presents-Demcizumab-Data-From-Phase-1b-Clinical-Trial-in-Non-Small-Cell-Lung-Cancer-Patients-at-the-European-Lung-Cancer-Conference.html?print=1.

  165. Rudin, C. M., et al. (2017). Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: A first-in-human, first-in-class, open-label, phase 1 study. The Lancet Oncology, 18(1), 42–51.

    Article  CAS  PubMed  Google Scholar 

  166. Gordon, W. R., et al. (2007). Structural basis for autoinhibition of Notch. Nature Structural & Molecular Biology, 14(4), 295–300.

    Article  CAS  Google Scholar 

  167. Li, K., et al. (2008). Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. Journal of Biological Chemistry, 283(12), 8046–8054.

    Article  CAS  Google Scholar 

  168. Aste-Amézaga, M., et al. (2010). Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS One, 5(2), e9094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Daniel, D. B., Rudin, C. M., Hart, L., Spigel, D. R., Edelman, M. J., Goldschmidt, J., Bordoni, R., et al. (2017). 1530PDResults of a randomized, placebo-controlled, phase 2 study of tarextumab (TRXT, anti-Notch2/3) in combination with etoposide and platinum (EP) in patients (pts) with untreated extensive-stage small-cell lung cancer (ED-SCLC). Annals of Oncology, 28(suppl_5).

    Google Scholar 

  170. OncoMed Pharmaceuticals, I. (2017). OncoMed’s phase 2 trial of tarextumab in small cell lung cancer does not meet endpoints. In Company also announces discontinuation of brontictuzumab phase 1b study. OncoMed Pharmaceuticals, Inc: Online.

    Google Scholar 

  171. Chiang, A., Mclaughlin, J., Pietanza, M. C., Spira, A., Jotte, R., Gadgeel, S., Mita, A. et al. (2015). NOTCH3 protein expression and outcome in small cell lung Cancer (SCLC) and therapeutic targeting with Tarextumab (anti-NOTCH 2/3). Journal of Thoracic Oncology, 10(9), S361. New York, NY: Elsevier Science Inc.

    Google Scholar 

  172. Davis, S. L., et al. (2013). A first-in-human phase I study of the novel cancer stem cell (CSC) targeting antibody OMP-52M51 (anti-Notch1) administered intravenously to patients with certain advanced solid tumors. In Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics.

    Google Scholar 

  173. Liu, Z., et al. (2011). Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. The Journal of Clinical Investigation, 121(2), 800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Pamela Munster, S. G. E., Patnaik, A., Shields, A., Tolcher, A. W., Davis, S. L., Heymach, J. V., Xu, L., Kapoun, A. M., Faoro, L., Dupont, J., & Ferrarotto, R. (2015). Safety and preliminary efficacy results of a first-in-human phase I study of the novel cancer stem cell (CSC) targeting antibody brontictuzumab (OMP-52M51, anti-Notch1) administered intravenously to patients with certain advanced solid tumors. [Poster] [cited 2018 January 24 2018]. Available from: http://posters.omed.s3.amazonaws.com/2015_N1_solid_tumor_triple_meeting.pdf.

  175. Geles, K. G., et al. (2015). Therapeutic targeting the NOTCH3 receptor with antibody drug conjugates. Cancer Research, 75(15 Suppl), 1697–1697.

    Article  Google Scholar 

  176. Mizugaki, H., et al. (2012). γ-Secretase inhibitor enhances antitumour effect of radiation in Notch-expressing lung cancer. British Journal of Cancer, 106(12), 1953–1959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ikezawa, Y., et al. (2017). Inhibition of Notch and HIF enhances the antitumor effect of radiation in Notch expressing lung cancer. International Journal of Clinical Oncology, 22(1), 59–69.

    Article  CAS  PubMed  Google Scholar 

  178. Purow, B. W., et al. (2008). Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis, 29(5), 918–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Jin, S., et al. (2008). Notch signaling regulates platelet-derived growth factor receptor-β expression in vascular smooth muscle cells. Circulation Research, 102(12), 1483–1491.

    Article  CAS  PubMed  Google Scholar 

  180. Yuan, X., et al. (2014). Notch signaling and EMT in non-small cell lung cancer: Biological significance and therapeutic application. Journal of Hematology & Oncology, 7(1), 87.

    Article  CAS  Google Scholar 

  181. Tammela, T., et al. (2008). Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature, 454(7204), 656–660.

    Article  CAS  PubMed  Google Scholar 

  182. Funahashi, Y., et al. (2010). Notch regulates the angiogenic response via induction of VEGFR-1. Journal of Angiogenesis Research, 2(3), 2.

    Google Scholar 

  183. Espinosa, L., et al. (2002). p65-NFκB synergizes with Notch to activate transcription by triggering cytoplasmic translocation of the nuclear receptor corepressor N-CoR. Journal of Cell Science, 115(6), 1295–1303.

    CAS  PubMed  Google Scholar 

  184. Wang, Z., et al. (2010). Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1806(2), 258–267.

    Article  CAS  Google Scholar 

  185. Mori, M., et al. (2015). Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors. Development, 142(2), 258–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ranganathan, P., et al. (2011). Hierarchical phosphorylation within the ankyrin repeat domain defines a phosphoregulatory loop that regulates Notch transcriptional activity. Journal of Biological Chemistry, 286(33), 28844–28857.

    Article  CAS  Google Scholar 

  187. Alamgeer, M., et al. (2013). Cancer stem cells in lung cancer: Evidence and controversies. Respirology, 18(5), 757–764.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Leung, E. L.-H., et al. (2010). Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One, 5(11), e14062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Eramo, A., et al. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death & Differentiation, 15(3), 504–514.

    Article  CAS  Google Scholar 

  190. Bertolini, G., et al. (2009). Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proceedings of the National Academy of Sciences, 106(38), 16281–16286.

    Article  CAS  Google Scholar 

  191. Chen, Y.-C., et al. (2008). Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One, 3(7), e2637.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Jiang, F., et al. (2009). Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Molecular Cancer Research, 7(3), 330–338.

    Article  CAS  PubMed  Google Scholar 

  193. Shi, Y., et al. (2012). The side population in human lung cancer cell line NCI-H460 is enriched in stem-like cancer cells. PLoS One, 7(3), e33358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Sullivan, J. P., et al. (2010). Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Research, 70(23), 9937–9948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Okudela, K., et al. (2012). Expression of the potential cancer stem cell markers, CD133, CD44, ALDH1, and β-catenin, in primary lung adenocarcinoma—their prognostic significance. Pathology International, 62(12), 792–801.

    Article  CAS  PubMed  Google Scholar 

  196. Wang, Z., et al. (2014). Notch signaling drives stemness and tumorigenicity of esophageal adenocarcinoma. Cancer Research, 74(21), 6364–6374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Garcia-Heredia, J. M., et al. (2017). The cargo protein MAP17 (PDZK1IP1) regulates the cancer stem cell pool activating the Notch pathway by abducting NUMB. Clinical Cancer Research, 23(14), 3871–3883.

    Article  CAS  PubMed  Google Scholar 

  198. Liu, Y.-P., et al. (2013). Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling. Cancer Research, 73(1), 406–416.

    Article  CAS  PubMed  Google Scholar 

  199. Rosell, R., et al. (2017). OA10.03 YAP-NOTCH and STAT3 signaling rebound as a compensatory response to gefitinib or osimertinib treatment in EGFR mutant lung cancer. Journal of Thoracic Oncology, 12(1), S281–S282.

    Article  Google Scholar 

  200. Kelly, K., et al. (2008). Phase III trial of maintenance gefitinib or placebo after concurrent chemoradiotherapy and docetaxel consolidation in inoperable stage III non-small-cell lung cancer: SWOG S0023. Journal of Clinical Oncology, 26(15), 2450–2456.

    Article  CAS  PubMed  Google Scholar 

  201. Goss, G. D., et al. (2010). A phase III randomized, double-blind, placebo-controlled trial of the epidermal growth factor receptor inhibitor gefitinb in completely resected stage IB-IIIA non-small cell lung cancer (NSCLC): NCIC CTG BR.19. Journal of Clinical Oncology, 28(18s), abstr LBA7005.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Joseph Amann, Yung-Mae Yao, Susan Cole, and Rajeswara Arasada for the critical review of this manuscript. We would like to thank Mikhail Dikov for providing a schematic of Notch’s role in T cell maturation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Carbone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinicropi-Yao, S.L., Koenig, M.J., Carbone, D.P. (2018). Notch in Lung Cancer. In: Miele, L., Artavanis-Tsakonas, S. (eds) Targeting Notch in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8859-4_10

Download citation

Publish with us

Policies and ethics