Skip to main content

Using Microinjection to Generate Genetically Modified Caenorhabditis elegans by CRISPR/Cas9 Editing

  • Protocol
  • First Online:
Microinjection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1874))

Abstract

In this chapter, we describe the procedure for generating genetically modified Caenorhabditis elegans using microinjection via the Cas9-mediated Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) editing technique. Specifically, we describe the detailed method of performing CRISPR editing by microinjection using the Cloning-free Co-CRISPR method described by the Seydoux lab. This microinjection protocol can also be used for CRISPR editing with protocols from other labs as well as for a variety of other editing techniques including Mos1-mediated single-copy transgene insertions (MosSCI), transcriptional activator-like nucleases (TALENs), and zinc-finger nucleases (ZFNs). Further, this microinjection protocol can also be used for injecting plasmid DNA to generate heritable extrachromosomal arrays for gene expression and mosaic analysis, performing RNAi by injection and delivering RNA, dyes or other molecules into the C. elegans germline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Baumeister R, Ge LM (2002) The worm in us - Caenorhabditis elegans as a model of human disease. Trends Biotechnol 20(4):147–148

    Article  CAS  PubMed  Google Scholar 

  3. Poulin G, Nandakumar R, Ahringer J (2004) Genome-wide RNAi screens in Caenorhabditis elegans: impact on cancer research. Oncogene 23(51):8340–8345

    Article  CAS  PubMed  Google Scholar 

  4. Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120(4):449–460

    Article  CAS  PubMed  Google Scholar 

  5. Corsi A, Wightman B, Chalfie M (2015) A transparent window into biology: a primer on Caenorhabditis elegans. Genetics 200(2):387–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fire A, Xu SQ, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  CAS  PubMed  Google Scholar 

  7. Kutscher L, Shaham S (2014) Forward and reverse mutagenesis in C. elegans. WormBook:1–26

    Google Scholar 

  8. Sulston J, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56(1):110–156

    Article  CAS  PubMed  Google Scholar 

  9. Kimble J, Hirsh D (1979) The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 70(2):396–417

    Article  CAS  PubMed  Google Scholar 

  10. Sulston J, Schierenberg E, White JG et al (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100(1):64–119

    Article  CAS  PubMed  Google Scholar 

  11. Deppe U, Schierenberg E, Cole T et al (1978) Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 75(1):376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hirsh D, Oppenheim D, Klass M (1976) Development of the reproductive system of Caenorhabditis elegans. Dev Biol 49(1):200–219

    Article  CAS  PubMed  Google Scholar 

  13. Kimble J, Hodgkin J, Smith T et al (1982) Suppression of an amber mutation by microinjection of suppressor tRNA in C. elegans. Nature 299(5882):456–458

    Article  CAS  PubMed  Google Scholar 

  14. Stinchcomb D, Shaw JE, Carr SH et al (1985) Extrachromosomal DNA transformation of Caenorhabditis elegans. Mol Cell Biol 5(12):3484–3496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mohan N, Chen CS, Hsieh HH et al (2010) In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett 10(9):3692–3699

    Article  CAS  PubMed  Google Scholar 

  16. Daniels B, Masi BC, Wirtz D (2006) Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos. Biophys J 90(12):4712–4719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mello C, Kramer JM, Stinchcomb D et al (1991) Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10(12):3959–3970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fire A (1986) Integrative transformation of Caenorhabditis elegans. EMBO J 5(10):2673–2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frøkjær-Jensen C, Davis W, Hopkins CE et al (2008) Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 40(11):1375–1383

    Article  PubMed  PubMed Central  Google Scholar 

  21. Friedland A, Tzur YB, Esvelt KM et al (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10(8):741–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sapranauskas R, Gasiunas G, Fremaux C et al (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39(21):9275–9282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deveau H, Barrangou R, Garneau JE et al (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190(4):1390–1400

    Article  CAS  PubMed  Google Scholar 

  24. Garneau JE, Dupuis ME, Villion M et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71

    Article  CAS  PubMed  Google Scholar 

  25. Gasiunas G, Barrangou R, Horvath P et al (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109(39):E2579–E2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dickinson D, Goldstein B (2016) CRISPR-based methods for Caenorhabditis elegans genome engineering. Genetics 202(3):885–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen X, Feng XZ, Guang SH (2016) Targeted genome engineering in Caenorhabditis elegans. Cell Biosci 6(1):60

    Article  PubMed  PubMed Central  Google Scholar 

  29. Frøkjær-Jensen C (2013) Exciting prospects for precise engineering of Caenorhabditis elegans genomes with CRISPR/Cas9. Genetics 195(3):635–642

    Article  PubMed  PubMed Central  Google Scholar 

  30. Paix A, Folkmann A, Rasoloson D et al (2015) High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9 ribonucleoprotein complexes. Genetics 201(1):47–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Paix A, Schmidt H, Seydoux G (2016) Cas9-assisted recombineering in C. elegans: genome editing using in vivo assembly of linear DNAs. Nucleic Acids Res 44(15):e128

    PubMed  PubMed Central  Google Scholar 

  32. Dickinson D, Pani AM, Heppert JK et al (2015) Streamlined genome engineering with a self-excising drug selection cassette. Genetics 200(4):1035–1049

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schwartz ML, Jorgensen EM (2016) SapTrap, a Toolkit for High-Throughput CRISPR/Cas9 Gene Modification in Caenorhabditis elegans. Genetics 202(4):1277–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Norris A, Kim HM, Colaiacovo MP et al (2015) Efficient genome editing in Caenorhabditis elegans with a toolkit of dual-marker selection cassettes. Genetics 201(2):449–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arribere JA, Bell RT, Fu BX, et al (2014) Efficient Marker-Free Recovery of Custom Genetic Modifications with CRISPR/Cas9 in Caenorhabditis elegans. Genetics 198(3):837–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim H, Ishidate T, Ghanta KS, et al (2014) A Co-CRISPR Strategy for Efficient Genome Editing in Caenorhabditis elegans. Genetics (197)4:1069–1080

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ward JD (2015) Rapid and Precise Engineering of the Caenorhabditis elegans Genome with Lethal Mutation Co-Conversion andInactivation of NHEJ Repair. Genetics 199(2):363–377

    Google Scholar 

  38. Berkowitz LA, Knight AL, Caldwell GA et al (2008) Generation of stable transgenic C. elegans using microinjection. J Vis Exp 18(833):e833

    Google Scholar 

  39. Mello C, Fire A (1995) DNA transformation. In: Epstein HF, Shakes DC (eds) Methods in cell biology, vol 48. Academic, San Diego, pp 451–482

    Google Scholar 

  40. Jin Y (1999) Transformation. In: Hope IA (ed) C. elegans: a practical approach, vol 213. OUP, Oxford, pp 69–96

    Google Scholar 

  41. Rieckher M, Kourtis N, Pasparaki A et al (2009) Transgenesis in Caenorhabditis elegans. In: Cartwright EJ (ed) Transgenesis techniques, vol 561. Humana Press, a part of Springer Science, New York, pp 21–39

    Chapter  Google Scholar 

  42. Paix A, Wang YM, Smith HE et al (2014) Scalable and versatile genome editing using linear DNAs with microhomology to Cas9 sites in Caenorhabditis elegans. Genetics 198(4):1347–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Kevin O’Connell, Andy Golden, Aimee Jaramillo-Lambert, Tetsu Fukushige, Prabhu Sankaralingam, and Daman Kumari from the National Institutes of Health for their critical feedback and comments on this manuscript. Nicole DeVaul and Tyler Hansen contributed equally to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Iyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Iyer, J., DeVaul, N., Hansen, T., Nebenfuehr, B. (2019). Using Microinjection to Generate Genetically Modified Caenorhabditis elegans by CRISPR/Cas9 Editing. In: Liu, C., Du, Y. (eds) Microinjection. Methods in Molecular Biology, vol 1874. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8831-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8831-0_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8830-3

  • Online ISBN: 978-1-4939-8831-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics