Skip to main content

Recombinant Methioninase as a DNA Demethylation Agent

  • Protocol
  • First Online:
Methionine Dependence of Cancer and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1866))

Abstract

This chapter reviews the effect of methionine (MET) restriction, via treatment with recombinant methioninase (rMETase), on DNA methylation of cancer cells. CCRF-CEM human cancer cells were treated with rMETase under subcytotoxic conditions. The rMETase-treated cells contained significantly lower levels of genomic methylated DNA than did untreated control cells. DNA methylation was measured by incorporation of the methyl group of [3H]methyl-S-adenosylmethionine into DNA and by methylation-sensitive arbitrarily-primed PCR. DNA hypomethylation effected by rMETase was of similar extent to that effected by treatment of the cells with the DNA methyltransferase inhibitor 5-azacytidine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diala ES, Hoffman RM (1982) Hypomethylation of HeLa cell DNA and the absence of 5-methylcytosine in SV40 and adenovirus (type 2) DNA: analysis by HPLC. Biochem Biophys Res Commun 107:19–26

    Article  CAS  Google Scholar 

  2. Diala ES, Cheah MSC, Rowitch D, Hoffman RM (1983) Extent of DNA methylation in human tumor cells. J Natl Cancer Inst 71:755–764

    CAS  PubMed  Google Scholar 

  3. Goelz SE, Vogelstein B, Hamilton SR, Feinberg AP (1985) Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228:187–190

    Article  CAS  Google Scholar 

  4. Mudbhary R, Hoshida Y, Chernyavskaya Y, Jacob V, Villanueva A, Fiel MI, Chen X, Kojima K, Thung S, Bronson RT, Lachenmayer A, Revill K, Alsinet C, Sachidanandam R, Desai A, Senbanerjee S, Ukomadu C, Llovet JM, Sadler KC (2014) UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer Cell 25:196–209

    Article  CAS  Google Scholar 

  5. Leodolter A, Alonso S, González B, Ebert MP, Vieth M, Röcken C, Wex T, Peitz U, Malfertheiner P, Perucho M (2015) Somatic DNA hypomethylation in H. pylori-associated high-risk gastritis and gastric cancer: enhanced somatic hypomethylation associates with advanced stage cancer. Clin Transl Gastroenterol 6:e85

    Article  CAS  Google Scholar 

  6. Liteplo RG, Kerbel RS (1987) Reduced levels of DNA 5-methylcytosine in metastatic variants of the human melanoma cell line MeWo. Cancer Res 47:2264–2267

    CAS  PubMed  Google Scholar 

  7. Kim YI, Giuliano A, Hatch KD, Schneider A, Nour MA, Dallal GE, Selhub J, Mason JB (1994) Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer 74:893–899

    Article  CAS  Google Scholar 

  8. Gao F, Shi L, Russin J, Zeng L, Chang X, He S, Chen TC, Giannotta SL, Weisenberger DJ, Zada G, Mack WJ, Wang K (2013) DNA methylation in the malignant transformation of meningiomas. PLoS One 8:e54114

    Article  CAS  Google Scholar 

  9. Karpf AR, Matsui S (2005) Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res 65:8635–8639

    Article  CAS  Google Scholar 

  10. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492

    Article  CAS  Google Scholar 

  11. Murakami T, Li S, Han Q, Tan Y, Kiyuna T, Igarashi K, Kawaguchi K, Hwang HK, Miyaki K, Singh AS, Nelson SD, Dry SM, Li Y, Hiroshima Y, Lwin TM, DeLong JC, Chishima T, Tanaka K, Bouvet M, Endo I, Eilber FC, Hoffman RM (2017) Recombinant methioninase effectively targets a Ewing’s sarcoma in a patient-derived orthotopic xenograft (PDOX) nude mouse model. Oncotarget 8:35630–35638

    PubMed  PubMed Central  Google Scholar 

  12. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  Google Scholar 

  13. Stern PH, Hoffman RM (1984) Elevated overall rates of transmethylation in cell lines from diverse human tumors. In Vitro 20:663–670

    Article  CAS  Google Scholar 

  14. Coalson DW, Mecham JO, Stern PH, Hoffman RM (1982) Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine dependent cancer cells. Proc Natl Acad Sci U S A 79:4248–4251

    Article  CAS  Google Scholar 

  15. Hoffman RM, Jacobsen SJ, Erbe RW (1978) Reversion to methionine independence by malignant rat and SV40-transformed human fibroblasts. Biochem Biophys Res Commun 82:228–234

    Article  CAS  Google Scholar 

  16. Hoffman RM, Jacobsen SJ, Erbe RW (1979) Reversion to methionine independence in simian virus 40-transformed human and malignant rat fibroblasts is associated with altered ploidy and altered properties of transformation. Proc Natl Acad Sci U S A 76:1313–1317

    Article  CAS  Google Scholar 

  17. Judde JG, Ellis M, Frost P (1989) Biochemical analysis of the role of transmethylation in the methionine dependence of tumor cells. Cancer Res 49:4859–4865

    CAS  PubMed  Google Scholar 

  18. Machover D, Zittoun J, Saffroy R, Broët P, Giraudier S, Magnaldo T, Goldschmidt E, Debuire B, Orrico M, Tan Y, Mishal Z, Chevallier O, Tonetti C, Jouault H, Ulusakarya A, Tanguy ML, Metzger G, Hoffman RM (2002) Treatment of cancer cells with methioninase produces DNA hypomethylation and increases DNA synthesis. Cancer Res 62:4685–4689

    CAS  PubMed  Google Scholar 

  19. Machover D, Zittoun J, Broe¨t P, Metzger G, Orrico M, Goldschmidt E, Schilf A, Tonetti C, Tan Y, Delmas-Marsalet B, Luccioni C, Falissard B, Hoffman RM (2001) Cytotoxic synergism of methioninase in combination with 5-fluorouracil and folinic acid. Biochem Pharmacol 61:867–876

    Article  CAS  Google Scholar 

  20. Carmichael J, Degraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47:936–942

    CAS  PubMed  Google Scholar 

  21. Robertson KD, Jones PA (2000) DNA methylation: past, present and future directions. Carcinogenesis 21:461–467

    Article  CAS  Google Scholar 

  22. Widschwendter M, Jones PA (2002) The potential prognostic, predictive, and therapeutic values of DNA methylation in cancer. Clin Cancer Res 8:17–21

    PubMed  Google Scholar 

  23. Jutterman R, Li E, Jaenisch R (1994) Toxicity of 5-aza-2-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci U S A 91:11797–11801

    Article  Google Scholar 

  24. Karpf AR, Moore BC, Ririe TO, Jones DA (2001) Activation of the p53 DNA damage response pathway after inhibition of DNA methyltransferase by 5-aza-2-deoxycytidine. Mol Pharmacol 59:751–757

    Article  CAS  Google Scholar 

  25. Sambrook J, Russell DW (2000) Isolation of high-molecular-weight DNA from mammalian cells using proteinase K and phenol. In: Molecular cloning: a laboratory manual, vol 1, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 6.4–6.12

    Google Scholar 

  26. Duesberg P, Li R (2003) Multistep carcinogenesis: a chain reaction of aneuploidizations. Cell Cycle 2:202–210

    Article  CAS  Google Scholar 

  27. Hoffman RM (2017) The wayward methyl group and the cascade to cancer. Cell Cycle 16:825–829

    Article  CAS  Google Scholar 

  28. Hoffman RM (2017) Is DNA methylation the new guardian of the genome? Molecular Cytogenetics 10:11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Hoffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hoffman, R.M., Machover, D. (2019). Recombinant Methioninase as a DNA Demethylation Agent. In: Hoffman, R. (eds) Methionine Dependence of Cancer and Aging. Methods in Molecular Biology, vol 1866. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8796-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8796-2_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8795-5

  • Online ISBN: 978-1-4939-8796-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics