Skip to main content

Methioninase Cell-Cycle Trap Cancer Chemotherapy

  • Protocol
  • First Online:
Methionine Dependence of Cancer and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1866))

Abstract

Cancer cells are methionine (MET) dependent compared to normal cells as they have an elevated requirement for MET in order to proliferate. MET restriction selectively traps cancer cells in the S/G2 phase of the cell cycle. The cell cycle phase can be visualized by color coding with the fluorescence ubiquitination-based cell cycle indicator (FUCCI). Recombinant methioninase (rMETase) is an enzyme that effectively degrades MET. rMETase induces S/G2-phase blockage of cancer cells which is identified by the cancer cells’ green fluorescence with FUCCI imaging. Cancer cells in G1/G0 are the majority of the cells in solid tumors and are resistant to the chemotherapy. Treatment of cancer cells with standard chemotherapy drugs only led to the majority of the cancer cell population being arrested in G0/G1 phase, identified by the cancer cells’ red fluorescence in the FUCCI system. The G0/G1-phase cancer cells are chemo-resistant. Tumor targeting Salmonella typhimurium A1-R (S. typhimurium A1-R) was used to decoy quiescent G0/G1 stomach cancer cells growing in nude mice to cycle, with subsequent rMETase treatment to selectively trap the decoyed cancer cells in S/G2 phase, which made them highly sensitive to chemotherapy. Subsequent cisplatinum (CDDP) or paclitaxel (PTX) chemotherapy was then administered to kill the decoyed and trapped cancer cells, which completely prevented or regressed tumor growth. In a subsequent experiment, a patient-derived orthotopic xenograft (PDOX) model of recurrent CDDP-resistant metastatic osteosarcoma was eradicated by the combination of Salmonella typhimurium A1-R decoy, rMETase S/G2-phase cell cycle trap, and CDDP cell kill. Salmonella typhimurium A1-R and rMETase pre-treatment thereby overcame CDDP resistance. These results demonstrate the effectiveness of the new chemotherapy paradigm of “decoy, trap, and kill” chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman RM, Jacobsen SJ (1980) Reversible growth arrest in simian virus 40-transformed human fibroblasts. Proc Natl Acad Sci U S A 77:7306–7310

    Article  CAS  Google Scholar 

  2. Yano S, Li S, Han Q, Tan Y, Bouvet M, Fujiwara T, Hoffman RM (2014) Selective methioninase-induced trap of cancer cells in S/G2 phase visualized by FUCCI imaging confers chemosensitivity. Oncotarget 5:8729–8736

    Article  Google Scholar 

  3. Yano S, Takehara K, Zhao M, Tan Y, Han Q, Li S, Bouvet M, Fujiwara T, Hoffman RM (2016) Tumor-specific cell-cycle decoy by Salmonella typhimurium A1-R combined with tumor-selective cell-cycle trap by methioninase overcome tumor intrinsic chemoresistance as visualized by FUCCI imaging. Cell Cycle 15:1715–1723

    Article  CAS  Google Scholar 

  4. Stern PH, Hoffman RM (1986) Enhanced in vitro selective toxicity of chemotherapeutic agents for human cancer cells based on a metabolic defect. J Natl Cancer Inst 76:629–639

    Article  CAS  Google Scholar 

  5. Yano S, Zhang Y, Zhao M, Hiroshima Y, Miwa S, Uehara F, Kishimoto H, Tazawa H, Bouvet M, Fujiwara T, Hoffman RM (2014) Tumor-targeting Salmonella typhimurium A1-R decoys quiescent cancer cells to cycle as visualized by FUCCI imaging and become sensitive to chemotherapy. Cell Cycle 13:3958–3963

    Article  CAS  Google Scholar 

  6. Igarashi K, Kawaguchi K, Kiyuna T, Miyake K, Miyake M, Li S, Han Q, Tan Y, Zhao M, Li Y, Nelson SD, Dry SM, Singh AS, Elliott I, Russell TA, Eckhardt MA, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Eilber FC, Hoffman RM (2018) Tumor-targeting S. typhimurium A1-R combined with recombinant methioninase and cisplatinum eradicates an osteosarcoma cisplatinum-resistant lung metastasis in a patient-derived orthotopic xenograft (PDOX) mouse model: Decoy, trap and kill chemotherapy moves toward the clinic. Cell Cycle 17(6):801–809

    Article  CAS  Google Scholar 

  7. Yano S, Zhang Y, Miwa S, Tome Y, Hiroshima Y, Uehara F, Yamamoto M, Suetsugu A, Kishimoto H, Tazawa H, Zhao M, Bouvet M, Fujiwara T, Hoffman RM (2014) Spatial-temporal FUCCI imaging of each cell in a tumor demonstrates locational dependence of cell cycle dynamics and chemoresponsiveness. Cell Cycle 13:2110–2119

    Article  CAS  Google Scholar 

  8. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T, Ogawa M, Masai H, Miyawaki A (2008) Visualizing spatiotemporal dynamics of multicellular cell cycle progression. Cell 132:487–498

    Article  CAS  Google Scholar 

  9. Igarashi K, Murakami T, Kawaguchi K, Kiyuna T, Miyake K, Zhang Y, Nelson SD, Dry SM, Li Y, Yanagawa J, Russell TA, Singh AS, Tsuchiya H, Elliott I, Eilber FC, Hoffman RM (2017) A patient-derived orthotopic xenograft (PDOX) mouse model of an cisplatinum-resistant osteosarcoma lung metastasis that was sensitive to temozolomide and trabectedin: implications for precision oncology. Oncotarget 8:62111–62119

    PubMed  PubMed Central  Google Scholar 

  10. Wang X, Fu X, Hoffman RM (1992) A new patient-like metastatic model of human lung cancer constructed orthotopically with intact tissue via thoracotomy in immunodeficient mice. Int J Cancer 51:992–995

    Article  CAS  Google Scholar 

  11. Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, Xu M, Penman S, Hoffman RM (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci U S A 102:755–760

    Article  CAS  Google Scholar 

  12. Zhao M, Geller J, Ma H, Yang M, Penman S, Hoffman RM (2007) Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci U S A 104:10170–10174

    Article  CAS  Google Scholar 

  13. Zhao M, Yang M, Ma H, Li X, Tan X, Li S, Yang Z, Hoffman RM (2006) Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res 66:7647–7652

    Article  CAS  Google Scholar 

  14. Tan Y, Xu M, Tan XZ, Tan XY, Wang X, Saikawa Y, Nagahama T, Sun X, Lenz M, Hoffman RM (1997) Overexpression and large-scale production of recombinant L-methionine-α-deamino-γ-mercaptomethane-lyase for novel anticancer therapy. Protein Expr Purif 9:233–245

    Article  CAS  Google Scholar 

  15. Innominato PF, Roche VP, Palesh OG, Ulusakarya A, Spiegel D, Lévi FA (2014) The circadian timing system in clinical oncology. Ann Med 46:191–207

    Article  CAS  Google Scholar 

  16. Wang X, Pan L, Mao N, Sun L, Qin X, Yin J (2013) Cell-cycle synchronization reverses Taxol resistance of human ovarian cancer cell lines. Cancer Cell Int 13:77

    Article  Google Scholar 

  17. Chandrasekaran B, Kute TE, Duch DS (1995) Synchronization of cells in the S phase of the cell cycle by 3′-azido-3′-deoxythymidine: implications for cell cytotoxicity. Cancer Chemother Pharmacol 35:489–495

    Article  CAS  Google Scholar 

  18. Kufe DW, Egan EM, Rosowsky A, Ensminger W, Frei E 3rd (1980) Thymidine arrest and synchrony of cellular growth in vivo. Cancer Treat Rep 64:1307–1317

    CAS  PubMed  Google Scholar 

  19. Hoffman RM (1984) Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis: a review and synthesis. Biochim Biophys Acta Reviews Cancer 738:49–87

    Article  CAS  Google Scholar 

  20. Hoffman RM, Erbe RW (1976) High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci U S A 73:1523–1527

    Article  CAS  Google Scholar 

  21. Hoffman RM, Jacobsen SJ, Erbe RW (1978) Reversion to methionine independence by malignant rat and SV40-transformed human fibroblasts. Biochem Biophys Res Commun 82:228–234

    Article  CAS  Google Scholar 

  22. Hoffman RM, Jacobsen SJ, Erbe RW (1979) Reversion to methionine independence in simian virus 40-transformed human and malignant rat fibroblasts is associated with altered ploidy and altered properties of transformation. Proc Natl Acad Sci U S A 76:I313–I317

    Article  Google Scholar 

  23. Coalson DW, Mecham JO, Stem PH, Hoffman RM (1982) Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine-dependent cancer cells. Proc Natl Acad Sci U S A 79:4248–4251

    Article  CAS  Google Scholar 

  24. Stem PH, Mecham JO, Wallace CD, Hoffman RM (1983) Reduced free-methionine in methionine-dependent SV40-transformed human fibroblasts synthesizing apparently normal amounts of methionine. J Cell Physiol 117:9–14

    Article  Google Scholar 

  25. Mecham JO, Rowitch D, Wallace CD, Stem PH, Hoffman RM (1983) The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochem Biophys Res Commun 117:429–434

    Article  CAS  Google Scholar 

  26. Stem PH, Wallace CD, Hoffman RM (1984) Altered methionine metabolism occurs in all members of a set of diverse human tumor cell lines. J Cell Physiol II(9):29–34

    Google Scholar 

  27. Stem PH, Hoffman RM (1984) Elevated overall rates of transmethylation in cell lines from diverse human tumors. In Vitro 20:663–670

    Article  Google Scholar 

  28. Tan Y, Xu M, Hoffman RM (2010) Broad selective efficacy of recombinant methioninase and polyethylene glycol-modified recombinant methioninase on cancer cells in vitro. Anticancer Res 30:1041–1046

    CAS  PubMed  Google Scholar 

  29. Fu X, Le P, Hoffman RM (1993) A metastatic-orthotopic transplant nude-mouse model of human patient breast cancer. Anticancer Res 13:901–904

    CAS  PubMed  Google Scholar 

  30. Fu X, Hoffman RM (1993) Human ovarian carcinoma metastatic models constructed in nude mice by orthotopic transplantation of histologically-intact patient specimens. Anticancer Res 13:283–286

    CAS  PubMed  Google Scholar 

  31. Hiroshima Y, Zhang Y, Zhang N, Maawy A, Mii S, Yamamoto M, Uehara F, Miwa S, Yano S, Murakami T, Momiyama M, Chishima T, Tanaka K, Ichikawa Y, Bouvet M, Murata T, Endo I, Hoffman RM (2015) Establishment of a patient-derived orthotopic xenograph (PDOX) model of HER-2-positive cervical cancer expressing the clinical metastatic pattern. PLoS One 10:e0117417

    Article  Google Scholar 

  32. Fu X, Besterman JM, Monosov A, Hoffman RM (1991) Models of human metastatic colon cancer in nude mice orthotopically constructed by using histologically intact patient specimens. Proc Natl Acad Sci U S A 88:9345–9349

    Article  CAS  Google Scholar 

  33. Metildi CA, Kaushal S, Luiken GA, Talamini MA, Hoffman RM, Bouvet M (2014) Fluorescently-labeled chimeric anti-CEA antibody improves detection and resection of human colon cancer in a patient-derived orthotopic xenograft (PDOX) nude mouse model. J Surg Oncol 109:451–458

    Article  CAS  Google Scholar 

  34. Hiroshima Y, Maawy A, Metildi CA, Zhang Y, Uehara F, Miwa S, Yano S, Sato S, Murakami T, Momiyama M, Chishima T, Tanaka K, Bouvet M, Endo I, Hoffman RM (2014) Successful fluorescence-guided surgery on human colon cancer patient-derived orthotopic xenograft mouse models using a fluorophore-conjugated anti-CEA antibody and a portable imaging system. J Laparoendosc Adv Surg Tech A 24:241–247

    Article  Google Scholar 

  35. Furukawa T, Kubota T, Watanabe M, Kitajima M, Hoffman RM (1993) Orthotopic transplantation of histologically intact clinical specimens of stomach cancer to nude mice: correlation of metastatic sites in mouse and individual patient donors. Int J Cancer 53:608–612

    Article  CAS  Google Scholar 

  36. Kawaguchi K, Han Q, Li S, Tan Y, Igarashi K, Miyake K, Kiyuna T, Miyake M, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Singh AS, Eckardt MA, Unno M, Eilber FC, Hoffman RM (2018) Intra-tumor L-methionine level highly correlates with tumor size in both pancreatic cancer and melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse models. Oncotarget 9:11119–11125

    PubMed  PubMed Central  Google Scholar 

  37. Kawaguchi K, Miyake K, Han Q, Li S, Tan Y, Igarashi K, Lwin TM, Higuchi T, Kiyuna T, Miyake M, Oshiro H, Bouvet M, Unno M, Hoffman RM (2018) Targeting altered cancer methionine metabolism with recombinant methioninase (rMETase) overcomes partial gemcitabine-resistance and regresses a patient-derived orthotopic xenograft (PDOX) nude mouse model of pancreatic cancer. Cell Cycle 21:1–6

    Google Scholar 

  38. Hiroshima Y, Zhang Y, Murakami T, Maawy A, Miwa S, Yamamoto M, Yano S, Sato S, Momiyama M, Mori R, Matsuyama R, Chishima T, Tanaka K, chikawa Y, Bouvet M, Endo I, Zhao M, Hoffman RM (2014) Efficacy of tumor-targeting Salmonella typhimurium A1-R in combination with anti-angiogenesis therapy on a pancreatic cancer patient-derived orthotopic xenograph (PDOX) and cell line mouse models. Oncotarget 5:12346–12357

    Article  Google Scholar 

  39. Fu X, Guadagni F, Hoffman RM (1992) A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc Natl Acad Sci U S A 89:5645–5649

    Article  CAS  Google Scholar 

  40. Hiroshima Y, Maawy A, Zhang Y, Murakami T, Momiyama M, Mori R, Matsuyama R, Katz MH, Fleming JB, Chishima T, Tanaka K, Ichikawa Y, Endo I, Hoffman RM, Bouvet M (2014) Metastatic recurrence in a pancreatic cancer patient derived orthotopic xenograft (PDOX) nude mouse model is inhibited by neoadjuvant chemotherapy in combination with fluorescence-guided surgery with an anti-CA 19–9-conjugated fluorophore. PLoS One 9:e114310

    Article  Google Scholar 

  41. Hiroshima Y, Maawy AA, Katz MH, Fleming JB, Bouvet M, Endo I, Hoffman RM (2015) Selective efficacy of zoledronic acid on metastasis in a patient-derived orthotopic xenograph (PDOX) nude-mouse model of human pancreatic cancer. J Surg Oncol 111:311–315

    Article  CAS  Google Scholar 

  42. Kawaguchi K, Igarashi K, Li S, Han Q, Tan Y, Kiyuna T, Miyake Y, Murakami T, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Unno M, Eilber FC, Hoffman RM (2017) Combination treatment with recombinant methioninase enables temozolomide to arrest a BRAF V600E melanoma growth in a patient-derived orthotopic xenograft. Oncotarget 8:85516–85525

    PubMed  PubMed Central  Google Scholar 

  43. Kawaguchi K, Han Q, Li S, Tan Y, Igarashi K, Kiyuna T, Miyake K, Miyake M, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Eckhardt MA, Unno M, Eilber FC, Hoffman RM (2018) Targeting methionine with oral recombinant methioninase (o-rMETase) arrests a patient-derived orthotopic xenograft (PDOX) model of BRAF-V600E mutant melanoma: implications for clinical cancer therapy and prevention. Cell Cycle 17(3):356–361

    Article  CAS  Google Scholar 

  44. Kawaguchi K, Murakami T, Chmielowski B, Igarashi K, Kiyuna T, Unno M, Nelson SD, Russell TA, Dry SM, Li Y, Eilber FC, Hoffman RM (2016) Vemurafenib-resistant BRAF-V600E mutated melanoma is regressed by MEK targeting drug trametinib, but not cobimetinib in a patient-derived orthotopic xenograft (PDOX) mouse model. Oncotarget 7:71737–71743

    PubMed  PubMed Central  Google Scholar 

  45. Kawaguchi K, Igarashi K, Murakami T, Chmiewloski B, Kiyuna T, Zhao M, Zhang Y, Singh A, Unno M, Nelson SD, Russell T, Dry SM, Li Y, Eilber FC, Hoffman RM (2016) Tumor-targeting Salmonella typhimurium A1-R combined with temozolomide regresses malignant melanoma with a BRAF-V600 mutation in a patient-derived orthotopic xenograft (PDOX) model. Oncotarget 7:85929–85936

    PubMed  PubMed Central  Google Scholar 

  46. Kawaguchi K, Igarashi K, Murakami T, Zhao M, Zhang Y, Chmielowski B, Kiyuna T, Nelson SD, Russell TA, Dry SM, Li Y, Unno M, Eilber FC, Hoffman RM (2017) Tumor-targeting Salmonella typhimurium A1-R sensitizes melanoma with a BRAF-V600E mutation to vemurafenib in a patient-derived orthotopic xenograft (PDOX) nude mouse model. J Cell Biochem 118:2314–2319

    Article  CAS  Google Scholar 

  47. Yamamoto M, Zhao M, Hiroshima Y, Zhang Y, Shurell E, Eilber FC, Bouvet M, Noda M, Hoffman RM (2016) Efficacy of tumor-targeting Salmonella typhimurium A1-R on a melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse model. PLoS One 11:e0160882

    Article  Google Scholar 

  48. Murakami T, Li S, Han Q, Tan Y, Kiyuna T, Igarashi K, Kawaguchi K, Hwang HK, Miyaki K, Singh AS, Hiroshima Y, Lwin TM, DeLong JC, Chishima T, Tanaka K, Bouvet M, Endo I, Eilber FC, Hoffman RM (2017) Recombinant methioninase effectively targets a Ewing’s sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget 8:35630–35638

    PubMed  PubMed Central  Google Scholar 

  49. Igarashi K, Kawaguchi K, Li S, Han Q, Tan Y, Murakami T, Kiyuna T, Miyake K, Miyake M, Singh AS, Eckhadt MA, Nelson SD, Russell TA, Dry SM, Li Y, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Singh RS, Eilber FC, Hoffman RM (2018) Recombinant methioninase in combination with DOX overcomes first-line DOX resistance in a patient-derived orthotopic xenograft nude-mouse model of undifferentiated spindle-cell sarcoma. Cancer Lett 417:168–173

    Article  CAS  Google Scholar 

  50. Igarashi K, Li S, Han Q, Tan Y, Kawaguchi K, Murakami T, Kiyuna T, Miyake K, Li Y, Nelson SD, Dry SM, Singh AS, Elliott I, Russell TA, Eckhadt MA, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Eilber FC, Hoffman RM (2018) Growth of a doxorubicin-resistant undifferentiated spindle-cell sarcoma PDOX is arrested by metabolic targeting with recombinant methioninase. J Cell Biochem 119:3537–3544

    Article  CAS  Google Scholar 

  51. Kawaguchi K, Igarashi K, Kiyuna T, Miyake K, Miyake M, Murakami T, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Singh AS, Unno M, Eilber FC, Hoffman RM (2018) Individualized doxorubicin sensitivity testing of undifferentiated soft tissue sarcoma (USTS) in a patient-derived orthotopic xenograft (PDOX) model demonstrates large differences between patients. Cell Cycle 17(5):627–633

    Article  CAS  Google Scholar 

  52. Murakami T, DeLong J, Eilber FC, Zhao M, Zhang Y, Zhang N, Singh A, Russell T, Deng S, Reynoso J, Quan C, Hiroshima Y, Matsuyama R, Chishima T, Tanaka K, Bouvet M, Chawla S, Endo I, Hoffman RM (2016) Tumor-targeting Salmonella typhimurium A1-R in combination with doxorubicin eradicate soft tissue sarcoma in a patient-derived orthotopic xenograft PDOX model. Oncotarget 7:12783–12790

    PubMed  PubMed Central  Google Scholar 

  53. Hiroshima Y, Zhao M, Zhang Y, Zhang N, Maawy A, Murakami T, Mii S, Uehara F, Yamamoto M, Miwa S, Yano S, Momiyama M, Mori R, Matsuyama R, Chishima T, Tanaka K, Ichikawa Y, Bouvet M, Endo I, Hoffman RM (2015) Tumor-targeting Salmonella typhimurium A1-R arrests a chemo-resistant patient soft-tissue sarcoma in nude mice. PLoS One 10:e0134324

    Article  Google Scholar 

  54. Kiyuna T, Murakami T, Tome Y, Kawaguchi K, Igarashi K, Zhang Y, Zhao M, Li Y, Bouvet M, Kanaya F, Singh A, Dry S, Eilber FC, Hoffman RM (2016) High efficacy of tumor-targeting Salmonella typhimurium A1-R on a doxorubicin- and dactolisib-resistant follicular dendritic-cell sarcoma in a patient-derived orthotopic xenograft PDOX nude mouse model. Oncotarget 7:33046–33054

    Article  Google Scholar 

  55. Murakami T, Singh AS, Kiyuna T, Dry SM, Li Y, James AW, Igarashi K, Kawaguchi K, DeLong JC, Zhang Y, Hiroshima Y, Russell T, Eckardt MA, Yanagawa J, Federman N, Matsuyama R, Chishima T, Tanaka K, Bouvet M, Endo I, Eilber FC, Hoffman RM (2016) Effective molecular targeting of CDK4/6 and IGF-1R in a rare FUS-ERG fusion CDKN2A-deletion doxorubicin-resistant Ewing’s sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget 7:47556–47564

    PubMed  PubMed Central  Google Scholar 

  56. Hiroshima Y, Zhang Y, Zhang N, Uehara F, Maawy A, Murakami T, Mii S, Yamamoto M, Miwa S, Yano S, Momiyama M, Mori R, Matsuyama R, Chishima T, Tanaka K, Ichikawa Y, Bouvet M, Endo I, Hoffman RM (2015) Patient-derived orthotopic xenograft (PDOX) nude mouse model of soft-tissue sarcoma more closely mimics the patient behavior in contrast to the subcutaneous ectopic model. Anticancer Res 35:697–701

    PubMed  Google Scholar 

  57. Igarashi K, Kawaguchi K, Kiyuna T, Murakami T, Miwa S, Nelson SD, Dry SM, Li Y, Singh A, Kimura H, Hayashi K, Yamamoto N, Tsuchiya H, Eilber FC, Hoffman RM (2017) Temozolomide combined with irinotecan caused regression in an adult pleomorphic rhabdomyosarcoma patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget 8:75874–75880

    PubMed  PubMed Central  Google Scholar 

  58. Igarashi K, Kawaguchi K, Murakami T, Kiyuna T, Miyake K, Nelson SD, Dry SM, Li Y, Yanagawa J, Russell TA, Singh AS, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Eilber FC, Hoffman RM (2017) Intra-arterial administration of tumor-targeting Salmonella typhimurium A1-R regresses a cisplatin-resistant relapsed osteosarcoma in a patient-derived orthotopic xenograft (PDOX) mouse model. Cell Cycle 16:1164–1170

    Article  CAS  Google Scholar 

  59. Murakami T, Kiyuna T, Kawaguchi K, Igarashi K, Singh AS, Hiroshima Y, Zhang Y, Zhao M, Miyake K, Nelson SD, Dry SM, Li Y, DeLong JC, Lwin TM, Chishima T, Tanaka K, Bouvet M, Endo I, Eilber FC, Hoffman RM (2017) The irony of highly-effective bacterial therapy of a patient-derived orthotopic xenograft (PDOX) model of Ewing’s sarcoma, which was blocked by Ewing himself 80 years ago. Cell Cycle 16:1046–1052

    Article  CAS  Google Scholar 

  60. Igarashi K, Kawaguchi K, Murakami T, Kiyuna T, Miyake K, Singh A, Nelson SD, Dry SM, Li Y, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Eilber FC, Hoffman RM (2017) High efficacy of pazopanib on an undifferentiated spindle-cell sarcoma resistant to first-line therapy is identified with a patient-derived orthotopic xenograft (PDOX) nude mouse model. J Cell Biochem 118:2739–3743

    Article  CAS  Google Scholar 

  61. Kiyuna T, Murakami T, Tome Y, Kawaguchi K, Igarashi K, Miyake K, Kanaya F, Singh A, Eilber FC, Hoffman RM (2017) Analysis of stroma labeling during multiple passage of a sarcoma imageable patient-derived orthotopic xenograft (iPDOX) in red fluorescent protein transgenic nude mice. J Cell Biochem 118:3367–3371

    Article  CAS  Google Scholar 

  62. Igarashi K, Kawaguchi K, Murakami T, Kiyuna T, Miyake K, Yamamoto N, Hayashi K, Kimura H, Nelson SD, Dry SM, Li Y, Singh AS, Miwa S, Odani A, Eilber FC, Tsuchiya H, Hoffman RM (2017) A novel anionic-phosphate-platinum complex effectively targets an undifferentiated pleomorphic sarcoma better than cisplatinum and doxorubicin in a patient-derived orthotopic xenograft (PDOX). Oncotarget 8:63353–63359

    PubMed  PubMed Central  Google Scholar 

  63. Miyake K, Murakami T, Kiyuna T, Igarashi K, Kawaguchi K, Miyake M, Li Y, Nelson SD, Dry SM, Bouvet M, Elliott IA, Russell TA, Singh AS, Eckardt MA, Hiroshima Y, Momiyama M, Matsuyama R, Chishima T, Endo I, Eilber FC, Hoffman RM (2017) The combination of temozolomide-irinotecan regresses a doxorubicin-resistant patient-derived orthotopic xenograft (PDOX) nude-mouse model of recurrent Ewing’s sarcoma with a FUS-ERG fusion and CDKN2A deletion: direction for third-line patient therapy. Oncotarget 8:103129–103136

    PubMed  PubMed Central  Google Scholar 

  64. Hoffman RM (2015) Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer 15:451–452

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Hoffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hoffman, R.M., Yano, S., Igarashi, K. (2019). Methioninase Cell-Cycle Trap Cancer Chemotherapy. In: Hoffman, R. (eds) Methionine Dependence of Cancer and Aging. Methods in Molecular Biology, vol 1866. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8796-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8796-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8795-5

  • Online ISBN: 978-1-4939-8796-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics