Skip to main content

Effects of Moving and Looming Stimuli on Attention, Memory, and Fear Conditioning

  • Chapter
  • First Online:
Looming Vulnerability

Abstract

Cognitive models of emotion assume that individuals continually scan their environments for stimuli that might influence their goals (Lazarus, 1991; Russell, 2003; Scherer, 2005). Similarly, Clark and Beck (2010) refer to an “Orienting Mode” of threat processing that precedes the activation of other cognitive processes. In short, an individual’s appraisals of threat are connected to other cognitive processes. As we will see in this chapter, the LVM posits that people prioritize their attention and memory for stimuli that are dynamic and that may represent rapidly growing threats. In addition, perceptions of the dynamism and movement may be a key factor in the fear conditioning process that lead a person to perceive previously neutral stimuli as threatening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams, R. A., & Christ, S. E. (2003). Motion onset captures attention. Psychological Science, 4, 427–432.

    Article  Google Scholar 

  • Anderson, N. D., Iidaka, T., Cabeza, R., Kapur, S., McIntosh, A. R., & Craik, F. I. (2000). The effects of divided attention on encoding-and retrieval-related brain activity: A PET study of younger and older adults. Journal of Cognitive Neuroscience, 12(5), 775–792.

    Article  PubMed  Google Scholar 

  • Arntz, A., Van Eck, M., & de Jong, P. J. (1992). Unpredictable sudden increases in intensity of pain and acquired fear. Journal of Psychophysiology, 6(1), 54–64.

    Google Scholar 

  • Bach, D. R., Schächinger, H., Neuhoff, J. G., Esposito, F., Di Salle, F., Lehmann, C., et al. (2008). Rising sound intensity: An intrinsic warning cue activating the amygdala. Cerebral Cortex, 18(1), 145–150.

    Article  PubMed  Google Scholar 

  • Basanovic, J., Dean, L., Riskind, J. H., & MacLeod, C. (2017). Direction of stimulus movement alters fear-linked individual differences in attentional vigilance to spider stimuli. Behaviour Research and Therapy, 99, 117–123.

    Article  PubMed  Google Scholar 

  • Buratto, L. G., Matthews, W. J., & Lamberts, K. (2009). When are moving images remembered better? Study-test congruence and the dynamic superiority effect. Journal of Experimental Psychology, 62(10), 1896–1903. https://doi.org/10.1080/17470210902883263

    Article  PubMed  Google Scholar 

  • Cabe, P. A. (2011). Haptic distal spatial perception mediated by strings: Haptic “looming”. Journal of Experimental Psychology: Human Perception and Performance, 37, 1492–1511.

    PubMed  Google Scholar 

  • Carr, A. T. (1969). The psychopathology of fear. In W. Sluckin (Ed.), Fear in animals and man (pp. 199–235). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Carretié, L., Hinojosa, J. A., López-Martín, S., Albert, J., Tapia, M., & Pozo, M. A. (2009). Danger is worse when it moves: Neural and behavioral indices of enhanced attentional capture by dynamic threatening stimuli. Neuropsychologia, 47(2), 364–369. https://doi.org/10.1016/j.neuropsychologia.2008.09.007

    Article  PubMed  Google Scholar 

  • Ceccarini, F., & Caudek, C. (2013). Anger superiority effect: The importance of dynamic emotional facial expressions. Visual Cognition, 21, 498–540.

    Article  Google Scholar 

  • Clark, D. A., & Beck, A. T. (2010). Cognitive therapy of anxiety disorders: Science and practice. New York: Guilford Press.

    Google Scholar 

  • Doi, H., & Shinohara, K. (2012). Bodily movement of approach is detected faster than that of receding. Psychonomic Bulletin and Review, 19, 858–863. https://doi.org/10.3758/s13423-012-0284-0

    Article  PubMed  Google Scholar 

  • Dorfan, N. M., & Woody, S. R. (2006). Does threatening imagery sensitize distress during contaminant exposure? Behaviour Research and Therapy, 44, 395–413.

    Article  PubMed  Google Scholar 

  • Franconceri, S. L., Hollingsworth, A., & Simons, D. J. (2005). Do new objects capture attention? Psychological Science, 16, 275–281.

    Article  Google Scholar 

  • Franconceri, S. L., & Simons, D. J. (2003). Moving and looming stimuli capture attention. Attention, Perception, & Psychophysics, 65(7), 999–1010.

    Article  Google Scholar 

  • Goldstein, A. G., Chance, J. E., Hoisington, M., & Buescher, K. (1982). Recognition memory for pictures: Dynamic vs. static stimuli. Bulletin of the Psychonomic Society, 20, 37–40.

    Article  Google Scholar 

  • Greenstein, M., Franklin, N., Martins, M., Sewack, C., & Meier, M. A. (2016). When anticipation beats accuracy: Threat alters memory for dynamic scenes. Memory and Cognition, 44, 633–649.

    Article  PubMed  Google Scholar 

  • Helson, H. (1964). Adaptation-level theory. New York: Harper & Row.

    Google Scholar 

  • James, W. (1890). The principles of psychology. New York: Holt and Company.

    Google Scholar 

  • Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14, 201–211.

    Article  Google Scholar 

  • Jonides, J., & Yantis, S. (1988). Uniqueness of abrupt visual onset in capturing attention. Perception & Psychophysics, 43(4), 346–354. https://doi.org/10.3758/BF03208805

    Article  Google Scholar 

  • Judd, A., Sim, J., Cho, J., von Muhlenen, A., & Lleras, A. (2004). Motion perception, awareness and attention effects with looming motion. Journal of Vision, 4(8), 608. https://doi.org/10.1167/4.8.608

    Article  Google Scholar 

  • Kahan, T. A., Colligan, S., & Wiedman, J. N. (2011). Are visual features of a looming or receding object processed in a capacity-free manner? Consciousness and Cognition, 20, 1761–1767. https://doi.org/10.1016/j.concog.2011.01.010

    Article  PubMed  Google Scholar 

  • Lander, K., Christie, F., & Bruce, V. (1999). The role of movement in the recognition of famous faces. Memory & Cognition, 27, 974–985.

    Article  Google Scholar 

  • Lazarus, R. S. (1991). Progress on a cognitive-motivational-relational theory of emotion. American Psychologist, 46, 819–834. https://doi.org/10.1037/0003066X.46.8.819

    Article  PubMed  Google Scholar 

  • Lazarus, R. S., & Folkman, S. (1984). Stress, appraisal, and coping. New York: Springer.

    Google Scholar 

  • Lewis, C. F., & McBeath, M. K. (2004). Bias to experience approaching motion in a three-dimensional virtual environment. Perception, 33, 259–276. https://doi.org/10.1068/p5190

    Article  PubMed  Google Scholar 

  • Lewis, M. S. (1975). Determinants of visual attention in real world scenes. Perceptual and Motor Skills, 41, 411–416.

    Article  PubMed  Google Scholar 

  • Lin, J. Y., Murray, S. O., & Boynton, G. M. (2009). Capture of attention to threatening stimuli without perceptual awareness. Current Biology, 19, 1118–1122.

    Article  PubMed  Google Scholar 

  • Matthews, W. J., Benjamin, C., & Osbourne, C. (2007). Memory for moving and static images. Psychonomic Bulletin & Review, 14, 989–999.

    Article  Google Scholar 

  • McCarthy, L., & Olsen, K. N. (2017). A ‘looming bias’ in spatial hearing? Effects of acoustic intensity and spectrum on categorical sound source localization. Attention, Perception, & Psychophysics, 79, 352–362.

    Article  Google Scholar 

  • McNally, R. J., & Steketee, G. S. (1985). The etiology and maintenance of severe animal phobias. Behavior Research and Therapy, 23, 431–435.

    Article  Google Scholar 

  • Meng, F., Gray, R., Ho, C., Ahtamad, M., & Spence, C. (2015). Dynamic vibrotactile signals for forward collision avoidance warning systems. Human Factors, 57, 329–346. https://doi.org/10.1177/0018720814542651

    Article  PubMed  PubMed Central  Google Scholar 

  • Nairne, J., Vanarsdall, J. E., Pandeirada, J., Cogdill, M., & Lebreton, J. (2013). Adaptive memory: The mnemonic value of animacy. Psychological Science, 24(10), 2099–2105. https://doi.org/10.1177/0956797613480803

    Article  PubMed  Google Scholar 

  • Otsuka, Y., Konishi, Y., Kanazawa, S., Yamaguchi, M. K., Abdi, H., & O’Toole, A. J. (2009). Recognition of moving and static faces by young infants. Child Development, 80, 1259–1271.

    Article  PubMed  Google Scholar 

  • Parker, A. L., & Alais, D. M. (2006). Auditory modulation of binocular rivalry [abstract]. Journal of Vision, 6(6), 855. https://doi.org/10.1167/6.6.855.

    Article  Google Scholar 

  • Paterson, R. J., & Neufeld, R. W. (1987). Clear danger: Situational determinants of the appraisal of threat. Psychological Bulletin, 101(3), 404–416. https://doi.org/10.1037/0033-2909.101.3.404

    Article  PubMed  Google Scholar 

  • Pike, G. E., Kemp, R. I., Towell, N. A., & Phillips, K. C. (1997). Recognising moving faces: The relative contribution of motion and perspective view information. Visual Cognition, 4, 409–437.

    Article  Google Scholar 

  • Pilz, K. S., Vuong, Q. C., Bülthoff, H. H., & Thornton, I. M. (2011). Walk this way: Approaching bodies can influence the processing of faces. Cognition, 118, 17–31.

    Article  PubMed  Google Scholar 

  • Reeves, B. E., Thorson, E., Rothschild, M., McDonald, D., Hirsch, J., & Goldstein, R. (1985). Attention to television: Intrastimulus effects of movement and scene changes on alpha variation over time. International Journal of Neuroscience, 25, 241–255.

    Article  Google Scholar 

  • Riskind, J. H. (1997). Looming vulnerability to threat: A cognitive paradigm for anxiety. Behaviour Research and Therapy, 35(5), 386–404.

    Article  Google Scholar 

  • Roark, D. A., O’Toole, A. J., Abdi, H., & Barrett, S. E. (2006). Learning the moves: The effect of familiarity and facial motion on person recognition across large changes in viewing format. Perception, 35, 761–773.

    Article  PubMed  Google Scholar 

  • Russell, J. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110, 145–172.

    Article  PubMed  Google Scholar 

  • Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 44, 695–729.

    Article  Google Scholar 

  • Schiff, W., Banka, L., & de Bordes Galdi, G. (1986). Recognizing people seen in events via dynamic “mug shots”. The American Journal of Psychology, 99, 219–231. https://doi.org/10.2307/1422276

    Article  PubMed  Google Scholar 

  • Seligman, M. E. P. (1971). Phobias and preparedness. Behavior Therapy, 2, 307–320.

    Article  Google Scholar 

  • Simons, R. F., Detenber, B. H., Roedema, T. M., & Reiss, J. E. (1999). Emotion processing in three systems: The medium and the message. Psychophysiology, 36, 619–627.

    Article  PubMed  Google Scholar 

  • Skarratt, P., Cole, G., & Gellatly, A. (2009). Prioritization of looming and receding objects: Equal slopes, different intercepts. Attention, Perception, & Psychophysics, 71, 964–970. https://doi.org/10.3758/APP.71.4.964

    Article  Google Scholar 

  • von Mühlenen, A., & Llera, A. (2007). No-onset looming motion guides spatial attention. Journal of Experimental Psychology: Human Perception and Performance, 33, 1297–1310.

    Google Scholar 

  • Weyers, P., Mühlberger, A., Hefele, C., & Pauli, P. (2006). Electromyographic responses to static and dynamic avatar emotional facial expressions. Psychophysiology, 43, 450–453. https://doi.org/10.1111/j.1469-8986.2006.00451.x

    Article  PubMed  Google Scholar 

  • Wisenden, B. D., & Harter, K. R. (2001). Motion, not shape, facilitates association of predation risk with novel objects by fathead minnows (Pimephales promelas). Ethology, 107, 357–364.

    Article  Google Scholar 

  • Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology. Human Perception and Performance, 10, 601–621.

    Google Scholar 

  • Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception & Performance, 16, 121–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riskind, J.H., Rector, N.A. (2018). Effects of Moving and Looming Stimuli on Attention, Memory, and Fear Conditioning. In: Looming Vulnerability. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8782-5_6

Download citation

Publish with us

Policies and ethics