Skip to main content

A Nanodisc-Cell Fusion Assay with Single-Pore Sensitivity and Sub-millisecond Time Resolution

  • Protocol
  • First Online:
SNAREs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1860))

Abstract

During exocytosis, vesicles fuse with the plasma membrane and release their contents. The fusion pore is the initial, nanometer-sized connection between the plasma membrane and the cargo-laden vesicle. A growing body of evidence points toward the fusion pore being a regulator of exocytosis, but the shortcomings of current experimental techniques to investigate single-fusion pores make it difficult to study factors governing pore behavior. Here we describe an assay that fuses v-SNARE-reconstituted nanodiscs with cells ectopically expressing “flipped” t-SNAREs to monitor dynamics of single fusion pores in a biochemically defined system using electrical recordings. We also describe a fluorescence microscopy-based approach to monitor nanodisc-cell fusion that is much simpler to employ, but cannot resolve single pores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chernomordik LV, Kozlov MM (2008) Mechanics of membrane fusion. Nat Struct Mol Biol 15:675–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–207. https://doi.org/10.1038/nature11320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477. https://doi.org/10.1126/science.1161748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lindau M, de Toledo GA (2003) The fusion pore. BBA-Mol Cell Res 1641:167–173

    CAS  Google Scholar 

  5. Jackson MB, Chapman ER (2008) The fusion pores of Ca2+ −triggered exocytosis. Nat Struct Mol Biol 15:684–689. https://doi.org/10.1038/nsmb.1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weber T et al (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  CAS  PubMed  Google Scholar 

  7. Gao Y et al (2012) Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337:1340–1343. https://doi.org/10.1126/science.1224492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lindau M (2012) High resolution electrophysiological techniques for the study of calcium-activated exocytosis. BBA-Gen Subjects 1820:1234–1242

    Article  CAS  Google Scholar 

  9. Fulop T, Radabaugh S, Smith C (2005) Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. J Neurosci 25:7324–7332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hastoy B, Clark A, Rorsman P, Lang J (2017) Fusion pore in exocytosis: more than an exit gate? A beta-cell perspective. Cell Calcium 68:45–61. https://doi.org/10.1016/j.ceca.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  11. Collins SC et al (2016) Increased expression of the diabetes gene SOX4 reduces insulin secretion by impaired fusion pore expansion. Diabetes 65:1952–1961. https://doi.org/10.2337/db15-1489

    Article  CAS  PubMed  Google Scholar 

  12. Staal RGW, Mosharov EV, Sulzer D (2004) Dopamine neurons release transmitter via a flickering fusion pore. Nat Neurosci 7:341–346

    Article  CAS  PubMed  Google Scholar 

  13. Pawlu C, DiAntonio A, Heckmann M (2004) Postfusional control of quantal current shape. Neuron 42:607–618

    Article  CAS  PubMed  Google Scholar 

  14. Chapochnikov NM et al (2014) Uniquantal release through a dynamic fusion pore is a candidate mechanism of hair cell exocytosis. Neuron 83:1389–1403. https://doi.org/10.1016/j.neuron.2014.08.003

    Article  CAS  PubMed  Google Scholar 

  15. He LM, Wu XS, Mohan R, Wu LG (2006) Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444:102–105

    Article  CAS  PubMed  Google Scholar 

  16. Alabi AA, Tsien RW (2013) Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu Rev Physiol 75:393–422. https://doi.org/10.1146/annurev-physiol-020911-153305

    Article  CAS  PubMed  Google Scholar 

  17. Travis ER, Wightman RM (1998) Spatio-temporal resolution of exocytosis from individual cells. Annu Rev Biophys Biomol Struct 27:77–103. https://doi.org/10.1146/annurev.biophys.27.1.77

    Article  CAS  PubMed  Google Scholar 

  18. Kyoung M, Zhang Y, Diao J, Chu S, Brunger AT (2013) Studying calcium-triggered vesicle fusion in a single vesicle-vesicle content and lipid-mixing system. Nat Protoc 8:1–16. https://doi.org/10.1038/nprot.2012.134

    Article  CAS  PubMed  Google Scholar 

  19. Yoon TY, Okumus B, Zhang F, Shin YK, Ha T (2006) Multiple intermediates in SNARE-induced membrane fusion. Proc Natl Acad Sci U S A 103:19731–19736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lai Y et al (2013) Fusion pore formation and expansion induced by Ca2+ and synaptotagmin 1. Proc Natl Acad Sci U S A 110:1333–1338. https://doi.org/10.1073/pnas.1218818110

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kiessling V, Liang B, Kreutzberger AJ, Tamm LK (2017) Planar supported membranes with mobile SNARE proteins and quantitative fluorescence microscopy assays to study synaptic vesicle fusion. Front Mol Neurosci 10:72. https://doi.org/10.3389/fnmol.2017.00072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karatekin E et al (2010) A fast, single-vesicle fusion assay mimics physiological SNARE requirements. Proc Natl Acad Sci U S A 107:3517–3521. https://doi.org/10.1073/pnas.0914723107

    Article  PubMed  PubMed Central  Google Scholar 

  23. Karatekin E, Rothman JE (2012) Fusion of single proteoliposomes with planar, cushioned bilayers in microfluidic flow cells. Nat Protoc 7:903–920. https://doi.org/10.1038/nprot.2012.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith MB et al (2011) Interactive, computer-assisted tracking of speckle trajectories in fluorescence microscopy: application to actin polymerization and membrane fusion. Biophys J 101:1794–1804. https://doi.org/10.1016/j.bpj.2011.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stratton BS et al (2016) Cholesterol increases the openness of SNARE-mediated flickering fusion pores. Biophys J 110:1538–1550. https://doi.org/10.1016/j.bpj.2016.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu Z et al (2016) Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains. Sci Rep 6:27287. https://doi.org/10.1038/srep27287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu Z et al (2017) Dilation of fusion pores by crowding of SNARE proteins. elife 6:e22964. https://doi.org/10.7554/eLife.22964

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shi L et al (2012) SNARE proteins: one to fuse and three to keep the nascent fusion pore open. Science 335:1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu C et al (2003) Fusion of cells by flipped SNAREs. Science 300:1745–1749

    Article  CAS  PubMed  Google Scholar 

  30. Sakmann B, Neher E (2009) Single-channel recording, 2nd edn. Springer, New York

    Google Scholar 

  31. Bello OD, Auclair SM, Rothman JE, Krishnakumar SS (2016) Using ApoE Nanolipoprotein particles to analyze SNARE-induced fusion pores. Langmuir 32:3015–3023. https://doi.org/10.1021/acs.langmuir.6b00245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stroeva E, Krishnakumar SS (2018) Using nanodiscs to probe Ca2+-dependent membrane interaction of Synaptotagmin-1. In: Fratti R (ed) SNAREs, Methods and protocols. Springer, New York

    Google Scholar 

  33. Breckenridge LJ, Almers W (1987) Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature 328:814–817

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all members of the Karatekin laboratory for stimulating discussions, D. Zenisek and F. Sigworth (Cellular and Molecular Physiology, Yale University) for expert advice and discussions, and James E. Rothman, Oscar Bello, Shyam Krishnakumar, and other members of the Rothman laboratory (Cell Biology, Yale University) for critical advice and introducing us to the use of nanodiscs. This work was supported by the National Institute of General Medical Sciences (grant R01GM108954), and a Kavli Foundation Neuroscience Scholar Award (to EK). NRD was supported by NIH Training Grant T32 NS41228 funded by the Jointly Sponsored NIH Predoctoral Training Program in the Neurosciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenyong Wu or Erdem Karatekin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dudzinski, N.R., Wu, Z., Karatekin, E. (2019). A Nanodisc-Cell Fusion Assay with Single-Pore Sensitivity and Sub-millisecond Time Resolution. In: Fratti, R. (eds) SNAREs. Methods in Molecular Biology, vol 1860. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8760-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8760-3_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8759-7

  • Online ISBN: 978-1-4939-8760-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics