Skip to main content

Dynamic 13C Labeling of Fast Turnover Metabolites for Analysis of Metabolic Fluxes and Metabolite Channeling

  • Protocol
  • First Online:
Microbial Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1859))

Abstract

Dynamic or isotopically nonstationary 13C labeling experiments are a powerful tool not only for precise carbon flux quantification (e.g., metabolic flux analysis of photoautotrophic organisms) but also for theĀ investigation of pathway bottlenecks, a cellā€™s phenotype, and metabolite channeling. In general, isotopically nonstationary metabolic flux analysis requires three main components: (1) transient isotopic labeling experiments; (2) metabolite quenching and isotopomer analysis using LC-MS; (3) metabolic network construction and flux quantification. Labeling dynamics of key metabolites from 13C-pulse experiments allow flux estimation of key central pathways by solving ordinary differential equations to fit time-dependent isotopomer distribution data. Additionally, it is important to provide biomass requirements, carbon uptake rates, specific growth rates, and carbon excretion rates to properly and precisely balance the metabolic network. Labeling dynamics through cascade metabolites may also identify channeling phenomena in which metabolites are passed between enzymes without mixing with the bulk phase. In this chapter, we outline experimental protocols to probe metabolic pathways through dynamic labeling. We describe protocols for labeling experiments, metabolite quenching and extraction, LC-MS analysis, computational flux quantification, and metabolite channeling observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoniewicz MR (2015) Methods and advances in metabolic flux analysis: a mini-review. J Ind Microbiol Biotechnol 42:317ā€“325. https://doi.org/10.1007/s10295-015-1585-x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Young JD, Shastri AA, Stephanopoulos G, Morgan JA (2011) Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metab Eng 13:656ā€“665. https://doi.org/10.1016/j.ymben.2011.08.002

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Bennette NB, Eng JF, Dismukes GC (2011) An LCā€“MS-Based Chemical and Analytical Method for Targeted Metabolite Quantification in the Model Cyanobacterium Synechococcus sp. PCC 7002. Anal Chem 83:3808ā€“3816. https://doi.org/10.1021/ac200108a

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Zamboni N, Fendt S-M, RĆ¼hl M, Sauer U (2009) 13C-based metabolic flux analysis. Nat Protoc 4:878ā€“892. https://doi.org/10.1038/nprot.2009.58

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Young JD (2014) INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics 30:1333ā€“1335

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary Metabolite Units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68ā€“86. https://doi.org/10.1016/j.ymben.2006.09.001

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Young JD, Walther JL, Antoniewicz MR et al (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol Bioeng 99:686ā€“699. https://doi.org/10.1002/bit.21632

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Kajihata S, Furusawa C, Matsuda F, Shimizu H (2014) OpenMebius: an open source software for isotopically nonstationary 13C-based metabolic flux analysis. Biomed Res Int 2014:627014. https://doi.org/10.1155/2014/627014

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Schaub J, Mauch K, Reuss M (2008) Metabolic flux analysis in Escherichia coli by integrating isotopic dynamic and isotopic stationary 13C labeling data. Biotechnol Bioeng 99:1170ā€“1185. https://doi.org/10.1002/bit.21675

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Wahl SA, Nƶh K, Wiechert W (2008) 13C labeling experiments at metabolic nonstationary conditions: An exploratory study. BMC Bioinformatics 9:152. https://doi.org/10.1186/1471-2105-9-152

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Wiechert W, Nƶh K (2013) Isotopically non-stationary metabolic flux analysis: complex yet highly informative. Curr Opin Biotechnol 24:979ā€“986. https://doi.org/10.1016/j.copbio.2013.03.024

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Niklas J, SchrƤder E, Sandig V et al (2011) Quantitative characterization of metabolism and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved metabolic flux analysis. Bioprocess Biosyst Eng 34:533ā€“545. https://doi.org/10.1007/s00449-010-0502-y

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Nargund S, Misra A, Zhang X et al (2014) Flux and reflux: metabolite reflux in plant suspension cells and its implications for isotope-assisted metabolic flux analysis. Mol BioSyst 10:1496ā€“1508. https://doi.org/10.1039/c3mb70348g

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Hollinshead WD, Rodriguez S, Martin HG et al (2016) Examining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using Ī”pfk mutants. Biotechnol Biofuels 9:212. https://doi.org/10.1186/s13068-016-0630-y

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Ma F, Jazmin LJ, Young JD, Allen DK (2014) Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation. Proc Natl Acad Sci 111:16967ā€“16972. https://doi.org/10.1073/pnas.1319485111

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Jazmin LJ, Young JD (2013) Isotopically nonstationary 13C metabolic flux analysis. Methods Mol Biol Clifton NJ 985:367ā€“390. https://doi.org/10.1007/978-1-62703-299-5_18

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Zhu Z-J, Schultz AW, Wang J et al (2013) Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat Protoc 8:451ā€“460. https://doi.org/10.1038/nprot.2013.004

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. NiedenfĆ¼hr S, ten Pierick A, van Dam PTN et al (2016) Natural isotope correction of MS/MS measurements for metabolomics and 13C fluxomics. Biotechnol Bioeng 113:1137ā€“1147. https://doi.org/10.1002/bit.25859

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Shastri AA, Morgan JA (2005) Flux balance analysis of photoautotrophic metabolism. Biotechnol Prog 21:1617ā€“1626. https://doi.org/10.1021/bp050246d

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Pramanik J, Keasling JD (1997) Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol Bioeng 56:398ā€“421. https://doi.org/10.1002/(SICI)1097-0290(19971120)56:4<398::AID-BIT6>3.0.CO;2-J

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Crown SB, Antoniewicz MR (2013) Publishing 13C metabolic flux analysis studies: A review and future perspectives. Metab Eng 20:42ā€“48. https://doi.org/10.1016/j.ymben.2013.08.005

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng 8:324ā€“337. https://doi.org/10.1016/j.ymben.2006.01.004

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Williams TCR, Sweetlove LJ, Ratcliffe RG (2011) Capturing Metabolite Channeling in Metabolic Flux Phenotypes. Plant Physiol 157:981ā€“984. https://doi.org/10.1104/pp.111.184887

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. van Winden W, Verheijen P, Heijnen S (2001) Possible pitfalls of flux calculations based on 13C-labeling. Metab Eng 3:151ā€“162

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  25. Kelleher JK, Masterson TM (1992) Model equations for condensation biosynthesis using stable isotopes and radioisotopes. Am J Physiol - Endocrinol Metab 262:E118ā€“E125

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Antoniewicz MR, Kraynie DF, Laffend LA et al (2007) Metabolic flux analysis in a nonstationary system: Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metab Eng 9:277ā€“292. https://doi.org/10.1016/j.ymben.2007.01.003

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Madji Hounoum B, Blasco H, Emond P, Mavel S (2016) Liquid chromatographyā€“high-resolution mass spectrometry-based cell metabolomics: Experimental design, recommendations, and applications. TrAC Trends Anal Chem 75:118ā€“128. https://doi.org/10.1016/j.trac.2015.08.003

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Murphy TA, Dang CV, Young JD (2013) Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. Metab Eng 15:206ā€“217. https://doi.org/10.1016/j.ymben.2012.07.008

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Oldiges M (2004) Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Biotechnol Prog 20:1623

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Nƶh K, Wahl A, Wiechert W (2006) Computational tools for isotopically instationary 13C labeling experiments under metabolic steady state conditions. Metab Eng 8:554ā€“577. https://doi.org/10.1016/j.ymben.2006.05.006

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Faijes M, Mars AE, Smid EJ (2007) Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum. Microb Cell Factories 6:27. https://doi.org/10.1186/1475-2859-6-27

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Chen M, Li A, Sun M et al (2014) Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus. J Zhejiang Univ Sci B 15:333ā€“342. https://doi.org/10.1631/jzus.B1300149

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Millard P, Massou S, Wittmann C et al (2014) Sampling of intracellular metabolites for stationary and non-stationary 13C metabolic flux analysis in Escherichia coli. Anal Biochem 465:38ā€“49. https://doi.org/10.1016/j.ab.2014.07.026

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Bajad SU, Lu W, Kimball EH et al (2006) Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A 1125:76ā€“88. https://doi.org/10.1016/j.chroma.2006.05.019

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Prasad Maharjan R, Ferenci T (2003) Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Anal Biochem 313:145ā€“154. https://doi.org/10.1016/S0003-2697(02)00536-5

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Rabinowitz JD, Kimball E (2007) Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal Chem 79:6167ā€“6173. https://doi.org/10.1021/ac070470c

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Bennett BD, Yuan J, Kimball EH, Rabinowitz JD (2008) Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. Nat Protoc 3:1299ā€“1311. https://doi.org/10.1038/nprot.2008.107

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  38. Nƶh K, Grƶnke K, Luo B et al (2007) Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J Biotechnol 129:249ā€“267. https://doi.org/10.1016/j.jbiotec.2006.11.015

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Antoniewicz MR (2015) Parallel labeling experiments for pathway elucidation and 13C metabolic flux analysis. Curr Opin Biotechnol 36:91ā€“97. https://doi.org/10.1016/j.copbio.2015.08.014

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Mƶllney M, Wiechert W, Kownatzki D, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments. Biotechnol Bioeng 66:86ā€“103

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  41. Baran R, Bowen BP, Bouskill NJ et al (2010) Metabolite Identification in Synechococcus sp. PCC 7002 Using Untargeted Stable Isotope Assisted Metabolite Profiling. Anal Chem 82:9034ā€“9042. https://doi.org/10.1021/ac1020112

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Arrivault S (2009) Use of reverse-phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations. Plant J 59:826

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  43. Link H, Fuhrer T, Gerosa L et al (2015) Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat Methods. https://doi.org/10.1038/nmeth.3584

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

This work was supported by NSF (CBET 1438125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinjie J. Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Abernathy, M., Wan, N., Shui, W., Tang, Y.J. (2019). Dynamic 13C Labeling of Fast Turnover Metabolites for Analysis of Metabolic Fluxes and Metabolite Channeling. In: Baidoo, E. (eds) Microbial Metabolomics. Methods in Molecular Biology, vol 1859. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8757-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8757-3_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8756-6

  • Online ISBN: 978-1-4939-8757-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics