Skip to main content

Assessment of In Vivo Kidney Cell Death: Glomerular Injury

  • Protocol
  • First Online:
Programmed Necrosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1857))

Abstract

The glomerulus functions as the filtration unit of the kidney. The mesangial, endothelial, and podocyte cells of the glomerulus exhibit the three clinically most important cell types, which are involved in diverse pathologic processes. Cell death has hardly been investigated in these cells but may be of critical importance to the pathogenesis of nephrotic syndrome, nephritic syndrome, focal segmental glomerulosclerosis (FSGS), mesangial proliferation, and thrombonic microangiopathy (which involves dysfunction and death of glomerular endothelial cells). The complexity of the glomerulus is frequently affected in autoimmune disorders, which may elicit cell death in mesangial cells and glomerular endothelia. Artificial antisera are used to induce anti-mesangial cell serum-induced mesangiolysis and selective endothelial cell injury, respectively. Genetic variations result in loss of function of podocytes and nephrotic syndrome, which may encompass similar cell death mechanisms as the ones that are observed in the model of secondary focal segmental glomerulosclerosis (FSGS). The following protocols describe our current arsenal to target glomerular cells in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yo Y, Braun MC, Barisoni L, Mobaraki H, Lu H, Shrivastav S, Owens J, Kopp JB (2003) Anti-mouse mesangial cell serum induces acute glomerulonephropathy in mice. Nephron Exp Nephrol 93(3):e92–e106. https://doi.org/10.1159/000069551

    Article  PubMed  CAS  Google Scholar 

  2. Starke C, Betz H, Hickmann L, Lachmann P, Neubauer B, Kopp JB, Sequeira-Lopez ML, Gomez RA, Hohenstein B, Todorov VT, Hugo CP (2015) Renin lineage cells repopulate the glomerular mesangium after injury. J Am Soc Nephrol 26(1):48–54. https://doi.org/10.1681/ASN.2014030265

    Article  PubMed  CAS  Google Scholar 

  3. Nangaku M, Shankland SJ, Couser WG, Johnson RJ (1998) A new model of renal microvascular injury. Curr Opin Nephrol Hy 7(4):457–462. https://doi.org/10.1097/00041552-199807000-00018

    Article  CAS  Google Scholar 

  4. Lee LK, Meyer TW, Pollock AS, Lovett DH (1995) Endothelial-cell injury initiates glomerular sclerosis in the rat remnant kidney. J Clin Invest 96(2):953–964. https://doi.org/10.1172/Jci118143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Golbus SM, Wilson CB (1979) Experimental glomerulonephritis induced by in situ formation of immune-complexes in glomerular Capillary Wall. Kidney Int 16(2):148–157. https://doi.org/10.1038/Ki.1979.116

    Article  PubMed  CAS  Google Scholar 

  6. Johnson RJ, Garcia RL, Pritzl P, Alpers CE (1990) Platelets mediate glomerular cell proliferation in immune complex nephritis induced by anti-mesangial cell antibodies in the rat. Am J Pathol 136(2):369–374

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A (2016) Transplantation and damage-associated molecular patterns (DAMPs). Am J Transplant 16(12):3338–3361

    Article  CAS  PubMed  Google Scholar 

  8. Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A (2016) DAMP - induced allograft and tumor rejection: the circle is closing. Am J Transplant. https://doi.org/10.1111/ajt.14012

  9. Hohenstein B, Braun A, Amann KU, Johnson RJ, Hugo CPM (2008) A murine model of site-specific renal microvascular endothelial injury and thrombotic microangiopathy. Nephrol Dial Transpl 23(4):1144–1156. https://doi.org/10.1093/ndt/gfm774

    Article  CAS  Google Scholar 

  10. Sradnick J, Rong S, Luedemann A, Parmentier SP, Bartaun C, Todorov VT, Gueler F, Hugo CP, Hohenstein B (2016) Extrarenal progenitor cells do not contribute to renal endothelial repair. J Am Soc Nephrol 27(6):1714–1726. https://doi.org/10.1681/Asn.2015030321

    Article  PubMed  CAS  Google Scholar 

  11. Reiser J, Altintas MM (2016) Podocytes. F1000Res 5:F1000 Faculty Rev-1114. https://doi.org/10.12688/f1000research.7255.1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ohse T, Vaughan MR, Kopp JB, Krofft RD, Marshall CB, Chang AM, Hudkins KL, Alpers CE, Pippin JW, Shankland SJ (2010) De novo expression of podocyte proteins in parietal epithelial cells during experimental glomerular disease. Am J Physiol-Renal 298(3):F702–F711. https://doi.org/10.1152/ajprenal.00428.2009

    Article  CAS  Google Scholar 

  13. Lazzeri E, Romagnani P (2015) Differentiation of parietal epithelial cells into podocytes. Nat Rev Nephrol 11(1):7–U8888. https://doi.org/10.1038/nrneph.2014.218

    Article  PubMed  CAS  Google Scholar 

  14. Lichtnekert J, Kaverina NV, Eng DG, Gross KW, Kutz JN, Pippin JW, Shankland SJ (2016) Renin-angiotensin-aldosterone system inhibition increases Podocyte derivation from cells of renin lineage. J Am Soc Nephrol 27(12):3611–3627. https://doi.org/10.1681/Asn.2015080877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kim JS, Han BG, Choi SO, Cha SK (2016) Secondary focal segmental Glomerulosclerosis: from Podocyte injury to Glomerulosclerosis. Biomed Res Int. https://doi.org/10.1155/2016/1630365

  16. D'Agati VD, Kaskel FJ, Falk RJ (2011) Focal segmental glomerulosclerosis. N Engl J Med 365(25):2398–2411. https://doi.org/10.1056/NEJMra1106556

    Article  PubMed  CAS  Google Scholar 

  17. Fogo AB (2007) Mechanisms of progression of chronic kidney disease. Pediatr Nephrol 22(12):2011–2022. https://doi.org/10.1007/s00467-007-0524-0

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shankland SJ (2006) The podocyte's response to injury: role in proteinuria and glomerulosclerosis. Kidney Int 69(12):2131–2147. https://doi.org/10.1038/sj.ki.5000410

    Article  PubMed  CAS  Google Scholar 

  19. Wiggins RC (2007) The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int 71(12):1205–1214. https://doi.org/10.1038/sj.ki.5002222

    Article  PubMed  CAS  Google Scholar 

  20. Ophascharoensuk V, Pippin JW, Gordon KL, Shankland SJ, Couser WG, Johnson RJ (1998) Role of intrinsic renal cells versus infiltrating cells in glomerular crescent formation. Kidney Int 54(2):416–425. https://doi.org/10.1046/j.1523-1755.1998.00003.x

    Article  PubMed  CAS  Google Scholar 

  21. Couser WG, Darby C, Salant DJ, Adler S, Stilmant MM, Lowenstein LM (1985) Anti-GBM antibody-induced proteinuria in isolated perfused rat kidney. Am J Phys 249(2 Pt 2):F241–F250

    CAS  Google Scholar 

  22. Pippin JW, Glenn ST, Krofft RD, Rusiniak ME, Alpers CE, Hudkins K, Duffield JS, Gross KW, Shankland SJ (2014) Cells of renin lineage take on a podocyte phenotype in aging nephropathy. Am J Physiol Renal Physiol 306(10):F1198–F1209. https://doi.org/10.1152/ajprenal.00699.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zhang J, Yanez D, Floege A, Lichtnekert J, Krofft RD, Liu ZH, Pippin JW, Shankland SJ (2015) ACE-inhibition increases podocyte number in experimental glomerular disease independent of proliferation. J Renin Angiotensin Aldosterone Syst 16(2):234–248. https://doi.org/10.1177/1470320314543910

    Article  PubMed  CAS  Google Scholar 

  24. Martin-Sanchez D, Ruiz-Andres O, Poveda J, Carrasco S, Cannata-Ortiz P, Sanchez-Nino MD, Ruiz OM, Egido J, Linkermann A, Ortiz A, Sanz AB (2017) Ferroptosis, but not Necroptosis, is important in nephrotoxic folic acid-induced AKI. J Am Soc Nephrol 28(1):218–229. https://doi.org/10.1681/ASN.2015121376

    Article  PubMed  CAS  Google Scholar 

  25. Turner JE, Paust HJ, Steinmetz OM, Peters A, Meyer-Schwesinger C, Heymann F, Helmchen U, Fehr S, Horuk R, Wenzel U, Kurts C, Mittrucker HW, Stahl RA, Panzer U (2008) CCR5 deficiency aggravates crescentic glomerulonephritis in mice. J Immunol 181(9):6546–6556

    Article  CAS  PubMed  Google Scholar 

  26. Schreiber A, Kettritz R (2013) The neutrophil in antineutrophil cytoplasmic autoantibody-associated vasculitis. J Leukoc Biol 94(4):623–631. https://doi.org/10.1189/jlb.1012525

    Article  PubMed  CAS  Google Scholar 

  27. Chen L, Lu Y, Wen J, Wang X, Wu L, Wu D, Sun X, Fu B, Yin Z, Jiang H, Chen X (2016) Comparative proteomics analysis of mouse Habu nephritis models with and without unilateral nephrectomy. Cellular physiology and biochemistry: international journal of experimental cellular physiology. Biochem Pharmacol 39(5):1761–1776. https://doi.org/10.1159/000447876

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Linkermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tonnus, W., Al-Mekhlafi, M., Gembardt, F., Hugo, C., Linkermann, A. (2018). Assessment of In Vivo Kidney Cell Death: Glomerular Injury. In: Ting, A. (eds) Programmed Necrosis. Methods in Molecular Biology, vol 1857. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8754-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8754-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8753-5

  • Online ISBN: 978-1-4939-8754-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics