Skip to main content

Genome-Wide High-Throughput RNAi Screening for Identification of Genes Involved in Protein Production

  • Protocol
  • First Online:
Recombinant Protein Expression in Mammalian Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1850))

Abstract

With an increasing number of blockbuster drugs being recombinant mammalian proteins, protein production platforms that focus on mammalian proteins have had a profound impact in many areas of basic and applied research. Many groups, both academic and industrial, have been focusing on developing cost-effective methods to improve the production of mammalian proteins that would support potential therapeutic applications. As it stands, while a wide range of platforms have been successfully developed for laboratory use, the majority of biologicals are still produced in mammalian cell lines due to the requirement for posttranslational modification and the biosynthetic complexity of target proteins. An unbiased high-throughput RNAi screening approach can be an efficient tool to identify target genes involved in recombinant protein production. Here we describe the process of optimizing the transfection conditions, performing the genome-wide siRNA screen, the activity and cell viability assays and the validation transfection to identify genes involved with protein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen DC, Krummen L (2002) Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol 13(2):117–123

    Article  CAS  Google Scholar 

  2. Coroadinha AS, Gama-Norton L, Amaral AI, Hauser H, Alves PM, Cruz PE (2010) Production of retroviral vectors: review. Curr Gene Ther 10(6):456–473

    Article  CAS  Google Scholar 

  3. Kunert R, Reinhart D (2016) Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol 100(8):3451–3461

    Article  CAS  Google Scholar 

  4. Kim JY, Kim YG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93(3):917–930

    Article  CAS  Google Scholar 

  5. Thomas P, Smart TG (2005) HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 51(3):187–200

    Article  CAS  Google Scholar 

  6. Jadhav V, Hackl M, Druz A, Shridhar S, Chung CY, Heffner KM, Kreil DP, Betenbaugh M, Shiloach J, Barron N, Grillari J, Borth N (2013) CHO microRNA engineering is growing up: recent successes and future challenges. Biotechnol Adv 31(8):1501–1513

    Article  CAS  Google Scholar 

  7. Echeverri CJ, Perrimon N (2006) High-throughput RNAi screening in cultured cells: a user's guide. Nat Rev Genet 7(5):373–384

    Article  CAS  Google Scholar 

  8. The Nobel Prize in Physiology or Medicine 2006. 2014. 13 Oct 2017. ]; Available from: <http://www.nobelprize.org/nobel_prizes/medicine/laureates/2006/>

    Google Scholar 

  9. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  CAS  Google Scholar 

  10. Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67(4):657–685

    Article  CAS  Google Scholar 

  11. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498

    Article  CAS  Google Scholar 

  12. Tabernero J, Shapiro GI, LoRusso PM, Cervantes A, Schwartz GK, Weiss GJ, Paz-Ares L, Cho DC, Infante JR, Alsina M, Gounder MM, Falzone R, Harrop J, White AC, Toudjarska I, Bumcrot D, Meyers RE, Hinkle G, Svrzikapa N, Hutabarat RM, Clausen VA, Cehelsky J, Nochur SV, Gamba-Vitalo C, Vaishnaw AK, Sah DW, Gollob JA, Burris HA 3rd (2013) First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in Cancer patients with liver involvement. Cancer Discov 3(4):406–417

    Article  CAS  Google Scholar 

  13. Gomes MJ, Dreier J, Brewer J, Martins S, Brandl M, Sarmento B (2016) A new approach for a blood-brain barrier model based on phospholipid vesicles: membrane development and siRNA-loaded nanoparticles permeability. J Memb Sci 503:8–15

    Article  CAS  Google Scholar 

  14. Mohr SE, Smith JA, Shamu CE, Neumüller RA, Perrimon N (2014) RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol 15(9):591–600

    Article  CAS  Google Scholar 

  15. Campeau E, Gobeil S (2011) RNA interference in mammals: behind the screen. Brief Funct Genomics 10(4):215–226

    Article  CAS  Google Scholar 

  16. Xiao S, Chen YC, Buehler E, Mandal S, Mandal A, Betenbaugh M, Park MH, Martin S, Shiloach J (2016) Genome-scale RNA interference screen identifies antizyme 1 (OAZ1) as a target for improvement of recombinant protein production in mammalian cells. Biotechnol Bioeng 113:2403–2415

    Article  CAS  Google Scholar 

  17. Feng M, Gao W, Wang R, Chen W, Man YG, Figg WD, Wang XW, Dimitrov DS, Ho M (2013) Therapeutically targeting glypican-3 via a conformation-specific single-domain antibody in hepatocellular carcinoma. Proc Natl Acad Sci U S A 110(12):E1083–E1091

    Article  CAS  Google Scholar 

  18. Abdul-Hussein S, Andrell J, Tate CG (2013) Thermostabilisation of the serotonin transporter in a cocaine-bound conformation. J Mol Biol 425(12):2198–2207

    Article  CAS  Google Scholar 

  19. Xiao S, Shiloach J, Grisshammer R (2015) Construction of recombinant HEK293 cell lines for the expression of the Neurotensin receptor NTSR1. Methods Mol Biol 1272:51–64

    Article  CAS  Google Scholar 

  20. R Core Team (2014) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.R-project.org/

  21. Carr D (2015) Package hexbin: hexagonal binning routines

    Google Scholar 

  22. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York. https://doi.org/10.1007/978-0-387-98141-3

    Book  Google Scholar 

  23. Chung N, Zhang XD, Kreamer A, Locco L, Kuan PF, Bartz S, Linsley PS, Ferrer M, Strulovici B (2008) Median absolute deviation to improve hit selection for genome-scale RNAi screens. J Biomol Screen 13(2):149–158

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research of the authors was supported by the Intramural Research Program of the National Institutes of Health (National Institute of Diabetes and Digestive and Kidney Disease).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Shiloach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Inwood, S., Betenbaugh, M.J., Lal, M., Shiloach, J. (2018). Genome-Wide High-Throughput RNAi Screening for Identification of Genes Involved in Protein Production. In: Hacker, D. (eds) Recombinant Protein Expression in Mammalian Cells. Methods in Molecular Biology, vol 1850. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8730-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8730-6_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8729-0

  • Online ISBN: 978-1-4939-8730-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics