Skip to main content

Continuous and Integrated Expression and Purification of Recombinant Antibodies

  • Protocol
  • First Online:
Recombinant Protein Expression in Mammalian Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1850))

Abstract

This chapter introduces the necessary concepts to design continuous expression and purification processes for monoclonal antibodies. The operation of a perfusion bioreactor is discussed containing the preparation procedures, the seeding train and the preparation and control of a long-term production run. The downstream processes exploit the benefits of countercurrent chromatography. Their design from batch experiments is presented. The CaptureSMB process is introduced for continuous capturing while for polishing applications the design of the two-column MCSGP process is described. The chapter also puts these processes together in the context of their integration to an end-to-end production process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9:767–774

    Article  CAS  PubMed  Google Scholar 

  2. Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. MAbs 7:9–14

    Article  CAS  PubMed  Google Scholar 

  3. Sawyer D, Sanderson K, Lu R, Daszkowski T, Clark E, Mcduff P, Astrom J, Heffernan C, Duffy L, Poole S, Ryll T, Sheehy P, Strachan D, Souquet J, Beattie D, Pollard D, Stauch O, Bezy P, Sauer T, Boettcher L, Simpson C, Dakin J, Pitt S, Boyle A (2017) Biomanufacturing technology roadmap–overview

    Google Scholar 

  4. Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32:992–1000. https://doi.org/10.1038/nbt0910-917

    Article  CAS  PubMed  Google Scholar 

  5. Eon-Duval A, Broly H, Gleixner R (2012) Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach. Biotechnol Prog 28:608–622. https://doi.org/10.1002/btpr.1548

    Article  CAS  PubMed  Google Scholar 

  6. Hossler P (2012) Protein glycosylation control in mammalian cell culture: past precedents and contemporary prospects. In: Hu WS, Zeng A-P (eds) Genomics and systems biology of mammalian. Cell culture. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 187–219

    Google Scholar 

  7. Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24:1241–1252

    Article  CAS  PubMed  Google Scholar 

  8. Kim JY, Kim Y-G, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93:917–930. https://doi.org/10.1007/s00253-011-3758-5

    Article  CAS  PubMed  Google Scholar 

  9. Gaughan CL (2016) The present state of the art in expression, production and characterization of monoclonal antibodies. Mol Divers 20:255–270. https://doi.org/10.1007/s11030-015-9625-z

    Article  CAS  PubMed  Google Scholar 

  10. Konstantinov KB, Cooney CL (2015) White paper on continuous bioprocessing. May 20-21, 2014 continuous manufacturing symposium. J Pharm Sci 104:813–820. https://doi.org/10.1002/jps.24268

    Article  CAS  PubMed  Google Scholar 

  11. Xenopoulos A (2015) A new, integrated, continuous purification process template for monoclonal antibodies : process modeling and cost of goods studies. J Biotechnol 213:42–53. https://doi.org/10.1016/j.jbiotec.2015.04.020

    Article  CAS  PubMed  Google Scholar 

  12. Pollock J, Coffman J, Ho SV, Farid SS (2017) Integrated continuous bioprocessing: economic, operational and environmental feasibility for clinical and commercial antibody manufacture. Biotechnol Prog:1–37. https://doi.org/10.1002/btpr.2492

  13. Walther J, Godawat R, Hwang C, Abe Y, Sinclair A, Konstantinov K (2015) The business impact of an integrated continuous biomanufacturing platform for recombinant protein production. J Biotechnol 213:3–12. https://doi.org/10.1016/j.jbiotec.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  14. Lee SL, O’Connor TF, Yang X, Cruz CN, Chatterjee S, Madurawe RD, Moore CMV, Yu LX, Woodcock J (2015) Modernizing pharmaceutical manufacturing: from batch to continuous production. J Pharm Innov 10:191–199. https://doi.org/10.1007/s12247-015-9215-8

    Article  Google Scholar 

  15. Griffiths JB, Pirt SJ (1967) The uptake of amino acids by mouse cells (strain LS) during growth in batch culture and chemostat culture: the influence of cell growth rate. Proc R Soc London Ser B Biol Sci 168:421–438

    Article  CAS  Google Scholar 

  16. Konstantinov KB, Tsai Y, Moles D (1996) Control of long-term perfusion chinese hamster ovary cell culture by glucose auxostat. Biotechnol Prog 12:100–109. https://doi.org/10.1021/bp950044p

    Article  CAS  PubMed  Google Scholar 

  17. Werner RG, Walz F, Noé W, Konrad A (1992) Safety and economic aspects of continuous mammalian cell culture. J Biotechnol 22:51–68. https://doi.org/10.1016/0168-1656(92)90132-S

    Article  CAS  PubMed  Google Scholar 

  18. Henry O, Kwok E, Piret JM (2008) Simpler noninstrumented batch and semicontinuous cultures provide mammalian cell kinetic data comparable to continuous and perfusion cultures. Biotechnol Prog 24:921–931. https://doi.org/10.1002/btpr.17

    Article  CAS  PubMed  Google Scholar 

  19. Chatterjee S (2012) FDA perspective on continuous manufacturing. In: IFPAC Annu. Meet. Balt. MD. pp. 34–42

    Google Scholar 

  20. Voisard D, Meuwly F, Ruffieux PA, Baer G, Kadouri A (2003) Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng 82:751–765. https://doi.org/10.1002/bit.10629

    Article  CAS  PubMed  Google Scholar 

  21. Clincke M, Mölleryd C, Zhang Y, Lindskog E, Walsh K, Chotteau V (2013) Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor™. Part I. Effect of the cell density on the process. Biotechnol Prog 29:754–767. https://doi.org/10.1002/btpr.1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bonham-Carter J, Shevitz J et al (2011) A brief history of perfusion biomanufacturing. BioProcess Int 9:24–30

    Google Scholar 

  23. Karst DJ, Serra E, Villiger TK, Soos M, Morbidelli M (2016) Characterization and comparison of ATF and TFF in stirred bioreactors for continuous mammalian cell culture processes. Biochem Eng J 110:17–26. https://doi.org/10.1016/j.bej.2016.02.003

    Article  CAS  Google Scholar 

  24. Lin H, Leighty RW, Godfrey S, Wang SB (2017) Principles and approach to developing mammalian cell culture media for high cell density perfusion process leveraging established fed-batch media. Biotechnol Prog 33:891–901. https://doi.org/10.1002/btpr.2472

    Article  CAS  PubMed  Google Scholar 

  25. Konstantinov K, Goudar C, Ng M, Meneses R, Thrift J, Chuppa S, Matanguihan C, Michaels J, Naveh D (2006) The “push-to-low” approach for optimization of high-density perfusion cultures of animal cells. In: Hu W-S (ed) Cell culture engineering. Springer, Berlin Heidelberg, pp 75–98

    Chapter  Google Scholar 

  26. Dowd JE, Jubb A, Kwok KE, Piret JM (2003) Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates. Cytotechnology 42:35–45. https://doi.org/10.1023/A:1026192228471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Warikoo V, Godawat R, Brower K, Jain S, Cummings D, Simons E, Johnson T, Walther J, Yu M, Wright B, Mclarty J, Karey KP, Hwang C, Zhou W, Riske F, Konstantinov K (2012) Integrated continuous production of recombinant therapeutic proteins. Biotechnol Bioeng 109:3018–3029. https://doi.org/10.1002/bit.24584

    Article  CAS  PubMed  Google Scholar 

  28. Xu S, Chen H (2016) High-density mammalian cell cultures in stirred-tank bioreactor without external pH control. Biochem Eng J 231:149–159. https://doi.org/10.1016/j.jbiotec.2016.06.019

    Article  CAS  Google Scholar 

  29. Carta G, Jungbauer A (2010) Protein chromatography: process development and scale-up. John Wiley & Sons, Inc, Weinheim

    Book  Google Scholar 

  30. Müller-Späth T, Morbidelli M (2014) Purification of human monoclonal antibodies and their fragments. In: Steinitz M (ed) Methods Mol. Biol. Humana Press, Totowa, NJ, pp 331–351

    Google Scholar 

  31. Morbidelli M (2013) Multicolumn continuous countercurrent chromatography. Integr. Contin. Biomanufacturing, ECI Symposium Series.

    Google Scholar 

  32. Pfister D, Nicoud L, Morbidelli M (2018) Continuous biopharmaceutical processes. Cambridge University Press, Cambridge

    Google Scholar 

  33. Steinebach F, Müller-Späth T, Morbidelli M (2016) Continuous counter-current chromatography for the capture and polishing steps in biopharmaceuticals production. Biotechnol J 11:1126–1141. https://doi.org/10.1002/biot.201500354

    Article  CAS  PubMed  Google Scholar 

  34. Vermeulen T (1958) In: Drew TB, Hoopes JW (eds) Separation by adsorption methods. Academic Press, Cambridge, pp 147–208

    Google Scholar 

  35. Mahajan E, George A, Wolk B (2012) Improving affinity chromatography resin efficiency using semi-continuous chromatography. J Chromatogr A 1227:154–162. https://doi.org/10.1016/j.chroma.2011.12.106

    Article  CAS  PubMed  Google Scholar 

  36. Girard V, Hilbold N-J, Ng CKS, Pegon L, Chahim W, Rousset F, Monchois V (2015) Large-scale monoclonal antibody purification by continuous chromatography, from process design to scale-up. J Biotechnol 213:65–73. https://doi.org/10.1016/j.jbiotec.2015.04.026

    Article  CAS  PubMed  Google Scholar 

  37. Pollock J, Bolton G, Coffman J, Ho SV, Bracewell DG, Farid SS (2013) Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture. J Chromatogr A 1284:17–27. https://doi.org/10.1016/j.chroma.2013.01.082

    Article  CAS  PubMed  Google Scholar 

  38. Grabski A, Mierendorf R (2009) Simulated moving bed chromatography. Genet Eng Biotechnol News 29:54–55

    Google Scholar 

  39. Brower M (2013) Platform downstream processes in the age of continuous chromatography: A case study. Integr. Contin. Biomanufacturing, ECI Symposium Series.

    Google Scholar 

  40. Angarita M, Müller-Späth T, Baur D, Lievrouw R, Lissens G, Morbidelli M (2015) Twin-column CaptureSMB: a novel cyclic process for protein A affinity chromatography. J Chromatogr A 1389:85–95. https://doi.org/10.1016/j.chroma.2015.02.046

    Article  CAS  PubMed  Google Scholar 

  41. Baur D (2017) Design, modeling and optimization of multi-column chromatographic processes. doi: https://doi.org/10.3929/ethz-a-010881404

  42. Kasten PR, Amundson NR (1952) Analytical solution for simple systems in moving bed adsorbers. Ind Eng Chem 44:1704–1711. https://doi.org/10.1021/ie50511a059

    Article  CAS  Google Scholar 

  43. Broughton DB, Gerhold CG (1961) Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets, US2985589A

    Google Scholar 

  44. Ströhlein G, Aumann L, Mazzotti M, Morbidelli M (2006) A continuous, counter-current multi-column chromatographic process incorporating modifier gradients for ternary separations. J Chromatogr A 1126:338–346. https://doi.org/10.1016/j.chroma.2006.05.011

    Article  CAS  PubMed  Google Scholar 

  45. Ströhlein G, Müller-Späth T, Aumann L (2012) Continuous chromatography (multicolumn countercurrent solvent gradient purification) for protein purification. In: Biopharm. Prod. Technol. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 107–137

    Google Scholar 

  46. Krättli M, Steinebach F, Morbidelli M (2013) Online control of the twin-column countercurrent solvent gradient process for biochromatography. J Chromatogr A 1293:51–59. https://doi.org/10.1016/j.chroma.2013.03.069

    Article  CAS  PubMed  Google Scholar 

  47. Aumann L, Morbidelli M (2008) A semicontinuous 3-column countercurrent solvent gradient purification (MCSGP) process. Biotechnol Bioeng 99:728–733. https://doi.org/10.1002/bit.21585

    Article  CAS  PubMed  Google Scholar 

  48. Aumann L, Morbidelli M (2007) A continuous multicolumn countercurrent solvent gradient purification (MCSGP) process. Biotechnol Bioeng 98:1043–1055. https://doi.org/10.1002/bit.21527

    Article  CAS  PubMed  Google Scholar 

  49. Krättli M, Müller-Späth T, Morbidelli M (2013) Multifraction separation in countercurrent chromatography (MCSGP). Biotechnol Bioeng 110:2436–2444. https://doi.org/10.1002/bit.24901

    Article  CAS  PubMed  Google Scholar 

  50. Müller-Späth T, Aumann L, Morbidelli M (2009) Role of cleaning-in-place in the purification of mab supernatants using continuous cation exchange chromatography. Sep Sci Technol 44:1–26. https://doi.org/10.1080/01496390802581243

    Article  CAS  Google Scholar 

  51. Steinebach F, Ulmer N, Wolf M, Decker L, Schneider V, Wälchli R, Karst D, Souquet J, Morbidelli M (2017) Design and operation of a continuous integrated monoclonal antibody production process. Biotechnol Prog 33:1303–1313. https://doi.org/10.1002/btpr.2522

    Article  CAS  PubMed  Google Scholar 

  52. Karst DJ, Steinebach F, Soos M, Morbidelli M (2016) Process performance and product quality in an integrated continuous antibody production process. Biotechnol Bioeng 114:298–307

    Article  PubMed  Google Scholar 

  53. Godawat R, Konstantinov K, Rohani M, Warikoo V (2015) End-to-end integrated fully continuous production of recombinant monoclonal antibodies. J Biotechnol 213:13–19. https://doi.org/10.1016/j.jbiotec.2015.06.393

    Article  CAS  PubMed  Google Scholar 

  54. Karst DJ, Steinebach F, Morbidelli M (2018) Continuous integrated manufacturing of therapeutic proteins. Curr Opin Biotechnol 53:76–84. https://doi.org/10.1016/j.copbio.2017.12.015

    Article  CAS  PubMed  Google Scholar 

  55. Fan Y, Ley D, Andersen MR (2018) Fed-batch CHO cell culture for lab-scale antibody production. In: Picanço-Castro V, Swiech K (eds) Recomb. Glycoprotein prod. Methods Protoc. Springer New York, New York, NY, pp 147–161

    Google Scholar 

  56. Steinebach F, Ulmer N, Decker L, Aumann L, Morbidelli M (2017) Experimental design of a twin-column countercurrent gradient purification process. J Chromatogr A 1492:19–26. https://doi.org/10.1016/j.chroma.2017.02.049

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the KTI (CTI)-Program of the Swiss Economic Ministry (Project 19190.2 PFIW-IW). The authors would like to thank Merck KGaA for supplying the Eshmuno A and CPX resin supporting this work. The authors declare that they have no conflicts of interest pertaining to the contents of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Morbidelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vogg, S., Wolf, M.K.F., Morbidelli, M. (2018). Continuous and Integrated Expression and Purification of Recombinant Antibodies. In: Hacker, D. (eds) Recombinant Protein Expression in Mammalian Cells. Methods in Molecular Biology, vol 1850. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8730-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8730-6_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8729-0

  • Online ISBN: 978-1-4939-8730-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics