Skip to main content

Psychometrics of Assessment: Understanding What Neuropsychology Adds to the Physician’s Understanding of the Patient

  • Chapter
  • First Online:
Physician's Field Guide to Neuropsychology

Abstract

What is neuropsychology, and what can the physician gain from a neuropsychological study?

To briefly review, neuropsychology is a scientific subspecialty of clinical psychology focused on the study of brain-behavior relationships. Neuropsychologists are subspecialists who hold a doctoral degree in psychology and have also undergone specialized training in the clinical neurosciences. They incorporate knowledge from functional neuroanatomy, neuropathology, behavioral neurology, psychometrics, psychology, and psychiatry to assess and treat the neurocognitive, behavioral, and affective correlates of known or suspected neurological dysfunction. Evaluations provide crucial information for guiding patient care, with the types of questions answerable by a neuropsychologist generally falling into one of six categories (see Lezak et al. Neuropsychological Assessment. Oxford University Press, New York, 2004, for a more expansive review):

The underlying rationale and mechanics of a neuropsychological study

The practice of neuropsychology is not limited to the work of a clinical neuropsychologist. Indeed, physicians frequently assess aspects of cognitive status as a routine component of patient care. For instance, the completion of a neurological exam with basic mental status exam involves screening several neuropsychological functions. However, neuropsychological evaluations performed by a clinical neuropsychologist involve an in-depth, psychometrically based assessment that measures cognitive domains in more depth and breadth than is done in a routine mental status or neurological exam. An important component of this formal assessment process involves establishment of comparative standards for nomothetic and idiographic deficit measurements. In other words, a patient’s performances on various tasks must be compared against benchmarks to allow the neuropsychologist to interpret whether deficits or strengths exist in relation to normative comparison standards (i.e., how the patient performs compared to others), as well as to individual comparison standards (i.e., how the patient’s current performance compares to his/her own premorbid level of baseline functioning). The use of comparison standards is not unique to neuropsychology as species- and population-based comparison standards are used in a variety of laboratory and clinical tests throughout medicine. However, nuances in the application of these approaches to the measurement of neuropsychological deficits do carry some special considerations, which are discussed below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lezak MD, Howieson DB, Loring DW. Neuropsychological assessment. 4th ed. New York: Oxford University Press; 2004.

    Google Scholar 

  2. Heilman KM, Valenstein E. Clinical Neuropsychology. New York: Oxford University Press; 2003.

    Google Scholar 

  3. Folstein MF, Folstein SE, Mchugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.

    Article  CAS  PubMed  Google Scholar 

  4. Scharre DW, Chang SI, Murden RA, et al. Self-administered Gerocognitive Examination (SAGE): a brief cognitive assessment Instrument for mild cognitive impairment (MCI) and early dementia. Alzheimer Dis Assoc Disord. 2010;24(1):64–71.

    Article  PubMed  Google Scholar 

  5. Smith GE, Ivnik RJ, Lucas J. Assessment techniques: tests, test batteries, norms and methodological approaches. In: Morgan JE, Ricker JH, editors. Textbook of clinical neuropsychology. New York: Taylor & Francis; 2008. p. 38–57.

    Google Scholar 

  6. Axelrod BN, Vanderploeg RD, Schinka JA. Comparing methods for estimating premorbid intellectual functioning. Arch Clin Neuropsychol. 1999;14(4):341–6.

    Article  CAS  PubMed  Google Scholar 

  7. Schoenberg MR, Duff K, Scott JG, Adams RL. An evaluation of the clinical utility of the OPIE-3 as an estimate of premorbid WAIS-III FSIQ. Clin Neuropsychol. 2003;17(3):308–21.

    Article  PubMed  Google Scholar 

  8. Schoenberg MR, Duff K, Dorfman K, Adams RL. Differential estimation of verbal intelligence and performance intelligence scores from combined performance and demographic variables: the OPIE-3 verbal and performance algorithms. Clin Neuropsychol. 2004;18(2):266–76.

    Article  PubMed  Google Scholar 

  9. Schoenberg MR, Lange RT, Saklofske DH, Suarez M, Brickell TA. Validation of the child premorbid intelligence estimate method to predict premorbid Wechsler Intelligence Scale for Children-Fourth Edition Full Scale IQ among children with brain injury. Psychol Assess. 2008;20(4):377–84.

    Article  PubMed  Google Scholar 

  10. Strauss E, Sherman EM, Spreen O. A compendium of neuropsychological tests, administration, norms, and commentary. 3rd ed. New York: Oxford University Press; 2006.

    Google Scholar 

  11. Heilbronner RL, Sweet JJ, Morgan JE, Larrabee GJ, Millis SR. American Academy of Clinical Neuropsychology Consensus Conference Statement on the neuropsychological assessment of effort, response bias, and malingering. Clin Neuropsychol. 2009;23(7):1093–129.

    Article  PubMed  Google Scholar 

  12. Slick DJ, Sherman EM, Iverson GL. Diagnostic criteria for malingered neurocognitive dysfunction: proposed standards for clinical practice and research. Clin Neuropsychol. 1999;13(4):545–61.

    Article  CAS  PubMed  Google Scholar 

  13. Boone KB. Assessment of feigned cognitive impairment: a neuropsychological perspective. New York: Guilford; 2007.

    Google Scholar 

  14. Boone KB. A reconsideration of the Slick et al. (1999) criteria for malingered neurocognitive dysfunction. In: Boone KB, editor. Assessment of feigned cognitive impairment: a neuropsychological perspective. New York: Guilford; 2007. p. 29–49.

    Google Scholar 

  15. Meyers JE, Volbrecht M, Axelrod BN, Reinsch-boothby L. Embedded symptom validity tests and overall neuropsychological test performance. Arch Clin Neuropsychol. 2011;26(1):8–15.

    Article  PubMed  Google Scholar 

  16. Schoenberg MR, Scott JG. The Little Black book of neuropsychology: a syndrome-based approach. New York: Springer; 2011.

    Book  Google Scholar 

  17. American Academy of Clinical Neuropsychology (AACN) practice guidelines for neuropsychological assessment and consultation. Clin Neuropsychol. 2007;21(2):209–31.

    Article  Google Scholar 

  18. Groth-Marnat G. Handbook of psychological assessment. Hoboken, NJ: John Wiley & Sons; 2009.

    Google Scholar 

  19. Heaton RK, Grant I, Matthews CG. Comprehensive norms for an expanded Halstead-Reitan Battery: demographic corrections, research findings, and clinical applications. Odessa, FL: Psychological Assessment Resources; 1991.

    Google Scholar 

  20. Schretlen DJ, Testa SM, Pearlson GD. Hopkins neuropsychological normative system professional manual. Lutz, FL: Psychological Assessment Resources; 2010.

    Google Scholar 

  21. Wechsler D. Wechsler Adult Intelligence Scale-revised. New York: The Psychological Corporation; 1981.

    Google Scholar 

  22. Schoengerg MR. Towards reporting standards for neuropsychological study results: a proposal to minimize communication errors with standard qualitative score descriptors. Clin Neurol Neurosurg. 2017;162:72–9.

    Article  Google Scholar 

  23. Hannay HJ, Lezak MD. The neuropsychological examination: Interpretation. In M. D. Lezak Howieson DB, Loring DW, eds. Neuropsychological assessment. 4th. New York: Oxford University Press; 2004:133–156.

    Google Scholar 

  24. Schretlen DJ, Testa SM, Winicki JM, Pearlson GD, Gordon B. Frequency and bases of abnormal performance by healthy adults on neuropsychological testing. J Int Neuropsychol Soc. 2008;14(3):436–45.

    Article  PubMed  Google Scholar 

  25. Donnell AJ, Belanger HG, Vanderploeg RD. Implications of psychometric measurement for neuropsychological interpretation. Clin Neuropsychol. 2011;25(7):1097–118.

    Article  PubMed  Google Scholar 

  26. Baxendale S, Thompson P. Beyond localization: the role of traditional neuropsychological tests in an age of imaging. Epilepsia. 2010;51(11):2225–30.

    Article  PubMed  Google Scholar 

  27. Baxendale S, Thompson PJ, Duncan JS. The role of the Wada test in the surgical treatment of temporal lobe epilepsy: an international survey. Epilepsia. 2008;49(4):715–20.

    Article  PubMed  Google Scholar 

  28. Duncan J. The current status of neuroimaging for epilepsy. Curr Opin Neurol. 2009;22(2):179–84.

    PubMed  Google Scholar 

  29. Sherer M, Novack TA, Sander AM, Struchen MA, Alderson A, Thompson RN. Neuropsychological assessment and employment outcome after traumatic brain injury: a review. Clin Neuropsychol. 2002;16(2):157–78.

    Article  PubMed  Google Scholar 

  30. Whyte J, Cifu D, Dikmen S, Temkin N. Prediction of functional outcomes after traumatic brain injury: a comparison of 2 measures of duration of unconsciousness. Arch Phys Med Rehabil. 2001;82(10):1355–9.

    Article  CAS  PubMed  Google Scholar 

  31. Achiron A, Polliack M, Rao SM, et al. Cognitive patterns and progression in multiple sclerosis: construction and validation of percentile curves. J Neurol Neurosurg Psychiatry. 2005;76(5):744–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chelune GJ. Evidence-based research and practice in clinical neuropsychology. Clin Neuropsychol. 2010;24(3):454–67.

    Article  PubMed  Google Scholar 

  33. Chelune GJ, Stone L. Risk of processing speed deficits among patients with relapsing and remitting and secondary progressive multiple sclerosis. J Clin Exp Neuropsychol. 2005;11:52.

    Google Scholar 

  34. Dujardin K, Defebvre L, Duhamel A, et al. Cognitive and SPECT characteristics predict progression of Parkinson’s disease in newly diagnosed patients. J Neurol. 2004;251(11):1383–92.

    Article  PubMed  Google Scholar 

  35. Fleisher AS, Sun S, Taylor C, et al. Volumetric MRI vs. clinical predictors of Alzheimer disease in mild cognitive impairment. Neurology. 2008;70(3):191–9.

    Article  CAS  PubMed  Google Scholar 

  36. Chelune GJ. Hippocampal adequacy versus functional reserve: predicting memory functions following temporal lobectomy. Arch Clin Neuropsychol. 1995;10(5):413–32.

    Article  CAS  PubMed  Google Scholar 

  37. Chelune GJ, Najam I. Risk factors associated with postsurgical decrements in memory. In: Luders HO, Comair Y, editors. Epilepsy surgery. 2nd ed. New York, NY: Lippincott: Williams & Wilkins; 2001. p. 497–504.

    Google Scholar 

  38. Hermann B, Davies K, Foley K, Bell B. Visual confrontation naming outcome after standard left anterior temporal lobectomy with sparing versus resection of the superior temporal gyrus: a randomized prospective clinical trial. Epilepsia. 1999;40(8):1070–6.

    Article  CAS  PubMed  Google Scholar 

  39. Lineweaver TT, Morris HH, Naugle RI, Najm IM, Diehl B, Bingaman W. Evaluating the contributions of state-of-the-art assessment techniques to predicting memory outcome after unilateral anterior temporal lobectomy. Epilepsia. 2006;47(11):1895–903.

    Article  PubMed  Google Scholar 

  40. Meehan WP, D’hemecourt P, Collins CL, Taylor AM, Comstock RD. Computerized neurocognitive testing for the management of sport-related concussions. Pediatrics. 2012;129(1):38–44.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Randolph C. Baseline neuropsychological testing in managing sport-related concussion: does it modify risk? Curr Sports Med Rep. 2011;10(1):21–6.

    Article  PubMed  Google Scholar 

  42. Bauer RM, Iverson GL, Cernich AN, Binder LM, Ruff RM, Naugle RI. Computerized neuropsychological assessment devices: joint position paper of the American Academy of Clinical Neuropsychology and the National Academy of Neuropsychology. Clin Neuropsychol. 2012;26(2):177–96.

    Article  PubMed  Google Scholar 

  43. Wild K, Howieson D, Webbe F, Seelye A, Kaye J. Status of computerized cognitive testing in aging: a systematic review. Alzheimers Dement. 2008;4(6):428–37.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Reeves DL, Winter K, LaCour S, Raynsford K, Kay G, Elsmore T, Hegge FW. Automated neuropsychological assessment metrics documentation, Test administration guide, vol. I. Washington, DC: Office of Military Performance Assessment Technology; 1992.

    Google Scholar 

  45. Reeves DL, Winter KP, Bleiberg J, Kane RL. ANAM genogram: historical perspectives, description, and current endeavors. Arch Clin Neuropsychol. 2007;22(Suppl 1):S15–37.

    Article  PubMed  Google Scholar 

  46. Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury. Indications and conditions for in‐theater post‐injury Neurocognitive Assessment Tool (NCAT) testing. Silver Spring, MD: Department of Defense; 2011.

    Google Scholar 

  47. Elsmore TF, Reeves DL, Reeves AN. The ARES test system for palm OS handheld computers. Arch Clin Neuropsychol. 2007;22(Suppl 1):S135–44.

    Article  PubMed  Google Scholar 

  48. Wilken JA, Sullivan CL, Lewandowski A, Kane RL. The use of ANAM to assess the side-effect profiles and efficacy of medication. Arch Clin Neuropsychol. 2007;22(Suppl 1):S127–33.

    Article  PubMed  Google Scholar 

  49. Gualtieri CT, Johnson LG. Neurocognitive testing supports a broader concept of mild cognitive impairment. Am J Alzheimers Dis Other Demen. 2005;20(6):359–66.

    Article  PubMed  Google Scholar 

  50. Masley S, Roetzheim R, Gualtieri T. Aerobic exercise enhances cognitive flexibility. J Clin Psychol Med Settings. 2009;16(2):186–93.

    Article  PubMed  Google Scholar 

  51. Lau BC, Collins MW, Lovell MR. Sensitivity and specificity of subacute computerized neurocognitive testing and symptom evaluation in predicting outcomes after sports-related concussion. Am J Sports Med. 2011;39(6):1209–16.

    Article  PubMed  Google Scholar 

  52. Van kampen DA, Lovell MR, Pardini JE, Collins MW, Fu FH. The “value added” of neurocognitive testing after sports-related concussion. Am J Sports Med. 2006;34(10):1630–5.

    Article  PubMed  Google Scholar 

  53. Resch JE, Mccrea MA, Cullum CM. Computerized neurocognitive testing in the management of sport-related concussion: an update. Neuropsychol Rev. 2013;23(4):335–49.

    Article  PubMed  Google Scholar 

  54. Cernich AN, Brennana DM, Barker LM, Bleiberg J. Sources of error in computerized neuropsychological assessment. Arch Clin Neuropsychol. 2007;22(Suppl 1):S39–48.

    Article  PubMed  Google Scholar 

  55. Harmon KG, Drezner JA, Gammons M, et al. American Medical Society for Sports Medicine position statement: concussion in sport. Br J Sports Med. 2013;47(1):15–26.

    Article  PubMed  Google Scholar 

  56. Schlegel RE, Gilliland K. Development and quality assurance of computer-based assessment batteries. Arch Clin Neuropsychol. 2007;22(Suppl 1):S49–61.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike R. Schoenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schoenberg, M.R., Soble, J.R., Osborn, K.E. (2019). Psychometrics of Assessment: Understanding What Neuropsychology Adds to the Physician’s Understanding of the Patient. In: Sanders, K. (eds) Physician's Field Guide to Neuropsychology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8722-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8722-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8720-7

  • Online ISBN: 978-1-4939-8722-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics