Skip to main content

Characterization of Mouse Mesenteric Lymphatic Valve Structure and Function

  • Protocol
  • First Online:
Lymphangiogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1846))

Abstract

Intraluminal valves of collecting lymphatic vessels ensure unidirectional lymph transport against hydrostatic pressure gradient. Mouse mesentery harbors up to 800 valves and represents a convenient model for lymphatic valve quantification, high resolution imaging of different stages of valve development as well as for analysis of valve function. The protocol describes embryonic and postnatal mesenteric lymphatic vessel preparation for whole-mount immunofluorescent staining and visualization of valve organization, quantification of main morphological parameters such as valve size and leaflet length, and the quantitative assessment of functional properties of adult valves using back-leak and closure tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zawieja DC (2010) Contractile physiology of Lymphatics. Lymphat Res Biol 7:87–96

    Article  Google Scholar 

  2. Bazigou E, Wilson JT, Moore JE (2014) Primary and secondary lymphatic valve development: molecular, functional and mechanical insights. Microvasc Res 96:38–45. https://doi.org/10.1016/j.mvr.2014.07.008

    Article  PubMed  PubMed Central  Google Scholar 

  3. Davis MJ, Rahbar E, Gashev AA, Zawieja DC, Moore JE (2011) Determinants of valve gating in collecting lymphatic vessels from rat mesentery. Am J Physiol Heart Circ Physiol 301:H48–H60. https://doi.org/10.1152/ajpheart.00133.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schulte-Merker S, Sabine A, Petrova TV (2011) Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol 193:607–618. https://doi.org/10.1083/jcb.201012094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sabine A, Saygili Demir C, Petrova TV (2016) Endothelial cell responses to biomechanical forces in lymphatic vessels. Antioxid Redox Signal 25:451–465. https://doi.org/10.1089/ars.2016.6685

    Article  CAS  PubMed  Google Scholar 

  6. Petrova TV, Karpanen T, Norrmén C, Mellor RH, Tamakoshi T, Finegold DN, Ferrell RE, Kerjaschki D, Mostoslavsky G, Ylä-Herttuala S, Miura N, Alitalo K (2004) Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 10:974–981. https://doi.org/10.1038/nm1094

    Article  CAS  PubMed  Google Scholar 

  7. Sabine A, Bovay E, Saygili Demir C, Kimura W, Jaquet M, Agalarov Y, Zangger N, Scallan JP, Graber W, Gulpinar E, Kwak BR, Mäkinen T, Martinez-Corral I, Ortega S, Delorenzi M, Kiefer F, Davis MJ, Djonov V, Miura N, Petrova TV (2015) FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. J Clin Invest 125:3861–3877. https://doi.org/10.1172/JCI80454

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sabine A, Agalarov Y, Maby-El Hajjami H, Jaquet M, Hägerling R, Pollmann C, Bebber D, Pfenniger A, Miura N, Dormond O, Calmes J-M, Adams RH, Mäkinen T, Kiefer F, Kwak BR, Petrova TV (2012) Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev Cell 22:430–445. https://doi.org/10.1016/j.devcel.2011.12.020

    Article  CAS  PubMed  Google Scholar 

  9. Tammela T, Saaristo A, Holopainen T, Lyytikkä J, Kotronen A, Pitkonen M, Abo-Ramadan U, Ylä-Herttuala S, Petrova TV, Alitalo K (2007) Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med 13:1458–1466. https://doi.org/10.1038/nm1689

    Article  CAS  PubMed  Google Scholar 

  10. Norrmén C, Ivanov KI, Cheng J, Zangger N, Delorenzi M, Jaquet M, Miura N, Puolakkainen P, Horsley V, Hu J, Augustin HG, Ylä-Herttuala S, Alitalo K, Petrova TV (2009) FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol 185:439–457. https://doi.org/10.1083/jcb.200901104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bazigou E, Xie S, Chen C, Weston A, Miura N, Sorokin LM, Adams R, Muro AF, Sheppard D, Mäkinen T (2009) Integrin-alpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell 17:175–186. https://doi.org/10.1016/j.devcel.2009.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bazigou E, Mäkinen T (2013) Flow control in our vessels: vascular valves make sure there is no way back. Cell Mol Life Sci 70:1055–1066. https://doi.org/10.1007/s00018-012-1110-6

    Article  CAS  PubMed  Google Scholar 

  13. Geng X, Cha B, Mahamud MR, Srinivasan RS (2017) Intraluminal valves: development, function and disease. Dis Model Mech 10:1273–1287. https://doi.org/10.1242/dmm.030825

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kazenwadel J, Betterman KL, Chong C-E, Stokes PH, Lee YK, Secker GA, Agalarov Y, Saygili Demir C, Lawrence DM, Sutton DL, Tabruyn SP, Miura N, Salminen M, Petrova TV, Matthews JM, Hahn CN, Scott HS, Harvey NL (2015) GATA2 is required for lymphatic vessel valve development and maintenance. J Clin Invest 125:2979–2994. https://doi.org/10.1172/JCI78888

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sweet DT, Jiménez JM, Chang J, Hess PR, Mericko-Ishizuka P, Fu J, Xia L, Davies PF, Kahn ML (2015) Lymph flow regulates collecting lymphatic vessel maturation in vivo. J Clin Invest 125:2995–3007. https://doi.org/10.1172/JCI79386

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schmid-Schonbein GW (1990) Microlymphatics and lymph flow. Physiol Rev 70:987–1028. https://doi.org/10.1152/physrev.1990.70.4.987

    Article  CAS  PubMed  Google Scholar 

  17. Zawieja SD, Castorena-Gonzalez JA, Scallan J, Davis MJ (2018) Differences in L-type calcium channel activity partially underlie the regional dichotomy in pumping behavior by murine peripheral and visceral lymphatic vessels. Am J Physiol Heart Circ Physiol 5:e9863. https://doi.org/10.1152/ajpheart.00499.2017

    Article  Google Scholar 

  18. Wiederhielm CA, WOODBURY JW, KIRK S, RUSHMER RF (1964) Pulsatile pressures in the microcirculation of Frog's mesentery. Am J Phys 207:173–176. https://doi.org/10.1152/ajplegacy.1964.207.1.173

    Article  CAS  Google Scholar 

  19. Intaglietta M, Tompkins WR (1971) Micropressure measurement with 1 micron and smaller cannulae. Microvasc Res 3:211–214

    Article  CAS  PubMed  Google Scholar 

  20. Fox JR, Wiederhielm CA (1973) Characteristics of the servo-controlled micropipet pressure system. Microvasc Res 5:324–335

    Article  CAS  PubMed  Google Scholar 

  21. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  CAS  PubMed  Google Scholar 

  22. Davis MJ (2005) An improved, computer-based method to automatically track internal and external diameter of isolated microvessels. Microcirculation 12:361–372. https://doi.org/10.1080/10739680590934772

    Article  PubMed  Google Scholar 

  23. Bertram CD, Macaskill C, Davis MJ, Moore JE (2014) Development of a model of a multi-lymphangion lymphatic vessel incorporating realistic and measured parameter values. Biomech Model Mechanobiol 13:401–416. https://doi.org/10.1007/s10237-013-0505-0

    Article  CAS  PubMed  Google Scholar 

  24. Jamalian S, Jafarnejad M, Zawieja SD, Bertram CD, Gashev AA, Zawieja DC, Davis MJ, Moore JE (2017) Demonstration and analysis of the suction effect for pumping lymph from tissue beds at subatmospheric pressure. Sci Rep 7:12080. https://doi.org/10.1038/s41598-017-11599-x

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation (31003A-156266 and CR32I3_166326), MEDIC, the Emma Muschamp Foundation, Fondation Leenaards, the TheraLymph ERA-NET E-Rare Research Program (FNS 31ER30_160674), the Commission for Technology and Innovation, and the Swiss Cancer League (KLS 3406-02-2016) (to T.V.P), Theodor and Gabriela Kummer funds from UNIL-FBM and Société Académique Vaudoise fellowships (to E.B.), Fondation Pierre Mercier pour la Science and Novartis Foundation for medical-biological research (to A.S.), and grants from the National Institutes of Health R01 HL-120867, R01 HL-122608, R01 HL-122578 (to M.J.D.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amélie Sabine or Tatiana V. Petrova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sabine, A., Davis, M.J., Bovay, E., Petrova, T.V. (2018). Characterization of Mouse Mesenteric Lymphatic Valve Structure and Function. In: Oliver, G., Kahn, M. (eds) Lymphangiogenesis. Methods in Molecular Biology, vol 1846. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8712-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8712-2_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8711-5

  • Online ISBN: 978-1-4939-8712-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics