Skip to main content

Imaging of Endothelial Cell Dynamic Behavior in Zebrafish

  • Protocol
  • First Online:
Lymphangiogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1846))

Abstract

In recent years, use of the zebrafish embryo as a model organism to study vascular development in vivo has provided valuable insights into the genetic and cellular events shaping the embryonic vasculature. In this chapter, we aim to present the methods for the measurement of some of the most commonly investigated dynamic parameters in endothelial cells during developmental angiogenesis, namely, migration speed and acceleration, filopodia extension, front–rear polarity, cell cycle progression, membrane deformations, and junctional rearrangements. We also offer suggestions on how to deal with the most common imaging and quantifications challenges faced when acquiring and quantifying endothelial cell dynamic behavior in vivo.

We intend this section to serve as an experience-based imaging primer for scientists interested in endothelial cell imaging in the zebrafish embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248(2):307–318

    Article  CAS  PubMed  Google Scholar 

  2. Hogan BM, Schulte-Merker S (2017) How to plumb a pisces: understanding vascular development and disease using zebrafish embryos. Dev Cell 42(6):567–583. https://doi.org/10.1016/j.devcel.2017.08.015

    Article  CAS  PubMed  Google Scholar 

  3. Kwon HB, Wang S, Helker CS, Rasouli SJ, Maischein HM, Offermanns S, Herzog W, Stainier DY (2016) In vivo modulation of endothelial polarization by Apelin receptor signalling. Nat Commun 7:11805. https://doi.org/10.1038/ncomms11805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Phng LK, Stanchi F, Gerhardt H (2013) Filopodia are dispensable for endothelial tip cell guidance. Development 140(19):4031–4040. https://doi.org/10.1242/dev.097352

    Article  CAS  PubMed  Google Scholar 

  5. Rochon ER, Menon PG, Roman BL (2016) Alk1 controls arterial endothelial cell migration in lumenized vessels. Development 143(14):2593–2602. https://doi.org/10.1242/dev.135392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lenard A, Ellertsdottir E, Herwig L, Krudewig A, Sauteur L, Belting HG, Affolter M (2013) In vivo analysis reveals a highly stereotypic morphogenetic pathway of vascular anastomosis. Dev Cell 25(5):492–506. https://doi.org/10.1016/j.devcel.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  7. Gebala V, Collins R, Geudens I, Phng LK, Gerhardt H (2016) Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo. Nat Cell Biol 18(4):443–450. https://doi.org/10.1038/ncb3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM (2006) Live imaging of lymphatic development in the zebrafish. Nat Med 12(6):711–716. https://doi.org/10.1038/nm1427

    Article  CAS  PubMed  Google Scholar 

  9. Lam PY, Fischer RS, Shin WD, Waterman CM, Huttenlocher A (2014) Spinning disk confocal imaging of neutrophil migration in zebrafish. Methods Mol Biol 1124:219–233. https://doi.org/10.1007/978-1-62703-845-4_14

    Article  PubMed  PubMed Central  Google Scholar 

  10. Keller PJ (2013) In vivo imaging of zebrafish embryogenesis. Methods 62(3):268–278. https://doi.org/10.1016/j.ymeth.2013.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stuurman N, Vale RD (2016) Impact of new camera technologies on discoveries in cell biology. Biol Bull 231(1):5–13. https://doi.org/10.1086/689587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thevenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7(1):27–41. https://doi.org/10.1109/83.650848

    Article  CAS  PubMed  Google Scholar 

  13. Roman BL, Pham VN, Lawson ND, Kulik M, Childs S, Lekven AC, Garrity DM, Moon RT, Fishman MC, Lechleider RJ, Weinstein BM (2002) Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129(12):3009–3019

    CAS  PubMed  Google Scholar 

  14. Heckel E, Boselli F, Roth S, Krudewig A, Belting HG, Charvin G, Vermot J (2015) Oscillatory flow modulates mechanosensitive klf2a expression through trpv4 and trpp2 during heart valve development. Curr Biol 25(10):1354–1361. https://doi.org/10.1016/j.cub.2015.03.038

    Article  CAS  PubMed  Google Scholar 

  15. Sbalzarini IF, Koumoutsakos P (2005) Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151(2):182–195. https://doi.org/10.1016/j.jsb.2005.06.002

    Article  CAS  PubMed  Google Scholar 

  16. Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. Methods Enzymol 504:183–200. https://doi.org/10.1016/B978-0-12-391857-4.00009-4

    Article  PubMed  Google Scholar 

  17. Vitorino P, Meyer T (2008) Modular control of endothelial sheet migration. Genes Dev 22(23):3268–3281. https://doi.org/10.1101/gad.1725808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Franco CA, Jones ML, Bernabeu MO, Geudens I, Mathivet T, Rosa A, Lopes FM, Lima AP, Ragab A, Collins RT, Phng LK, Coveney PV, Gerhardt H (2015) Dynamic endothelial cell rearrangements drive developmental vessel regression. PLoS Biol 13(4):e1002125. https://doi.org/10.1371/journal.pbio.1002125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ando K, Fukuhara S, Izumi N, Nakajima H, Fukui H, Kelsh RN, Mochizuki N (2016) Clarification of mural cell coverage of vascular endothelial cells by live imaging of zebrafish. Development 143(8):1328–1339. https://doi.org/10.1242/dev.132654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chi NC, Shaw RM, De Val S, Kang G, Jan LY, Black BL, Stainier DY (2008) Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. Genes Dev 22(6):734–739. https://doi.org/10.1101/gad.1629408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lagendijk AK, Gomez GA, Baek S, Hesselson D, Hughes WE, Paterson S, Conway DE, Belting HG, Affolter M, Smith KA, Schwartz MA, Yap AS, Hogan BM (2017) Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish. Nat Commun 8(1):1402. https://doi.org/10.1038/s41467-017-01325-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fukuhara S, Zhang J, Yuge S, Ando K, Wakayama Y, Sakaue-Sawano A, Miyawaki A, Mochizuki N (2014) Visualizing the cell-cycle progression of endothelial cells in zebrafish. Dev Biol 393(1):10–23. https://doi.org/10.1016/j.ydbio.2014.06.015

    Article  CAS  PubMed  Google Scholar 

  23. Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM, Rosewell I, Busse M, Thurston G, Medvinsky A, Schulte-Merker S, Gerhardt H (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12(10):943–953. https://doi.org/10.1038/ncb2103

    Article  CAS  PubMed  Google Scholar 

  24. Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445(7129):781–784. https://doi.org/10.1038/nature05577

    Article  CAS  PubMed  Google Scholar 

  25. Bussmann J, Bos FL, Urasaki A, Kawakami K, Duckers HJ, Schulte-Merker S (2010) Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk. Development 137(16):2653–2657. https://doi.org/10.1242/dev.048207

    Article  CAS  PubMed  Google Scholar 

  26. Jin SW, Beis D, Mitchell T, Chen JN, Stainier DY (2005) Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132(23):5199–5209. https://doi.org/10.1242/dev.02087

    Article  CAS  PubMed  Google Scholar 

  27. Hogan BM, Herpers R, Witte M, Helotera H, Alitalo K, Duckers HJ, Schulte-Merker S (2009) Vegfc/Flt4 signalling is suppressed by Dll4 in developing zebrafish intersegmental arteries. Development 136(23):4001–4009. https://doi.org/10.1242/dev.039990

    Article  CAS  PubMed  Google Scholar 

  28. Goetz JG, Steed E, Ferreira RR, Roth S, Ramspacher C, Boselli F, Charvin G, Liebling M, Wyart C, Schwab Y, Vermot J (2014) Endothelial cilia mediate low flow sensing during zebrafish vascular development. Cell Rep 6(5):799–808. https://doi.org/10.1016/j.celrep.2014.01.032

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baptiste Coxam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Coxam, B., Gerhardt, H. (2018). Imaging of Endothelial Cell Dynamic Behavior in Zebrafish. In: Oliver, G., Kahn, M. (eds) Lymphangiogenesis. Methods in Molecular Biology, vol 1846. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8712-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8712-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8711-5

  • Online ISBN: 978-1-4939-8712-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics