Skip to main content

Measuring the Overall Rate of Protein Breakdown in Cells and the Contributions of the Ubiquitin-Proteasome and Autophagy-Lysosomal Pathways

  • Protocol
  • First Online:
The Ubiquitin Proteasome System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1844))

Abstract

In certain physiological or pathological states (e.g., starvation, heat shock, or muscle atrophy) and upon drug treatments, the overall rate of protein degradation in cells may increase or decrease. These adaptations and pathological responses can occur through alterations in substrate flux through the ubiquitin-proteasome pathway (UPP), the autophagy-lysosomal system, or both. Therefore, it is important to precisely measure the activities of these degradation pathways in degrading cell proteins under different physiological states or upon treatment with drugs. In particular, proteasome inhibitors have become very important agents for treating multiple myeloma and very useful tools in basic research. To evaluate rigorously their efficacy and the cellular responses to other inhibitors, it is essential to know the degree of inhibition of protein breakdown. Unfortunately, commonly used assays of the activities of the UPP or autophagy rely on qualitative, indirect approaches that do not directly reflect the actual rates of protein degradation by these pathways. In this chapter, we describe isotopic pulse-chase methods to directly measure overall rates of protein degradation in cells by radiolabeling cell proteins and following their subsequent degradation to radioactive amino acids, which diffuse from cells into the medium and can be easily quantitated. While pulse-chase methods have often been used to follow degradation of specific proteins, the methods described here allow quantification of the total cellular activity in degrading either long-lived proteins (the great bulk of cell constituents) or the fraction with short half-lives. Moreover, by use of specific inhibitors of proteasomes or lysosomes, it is also possible to measure precisely the total contributions of the UPP or lysosomal proteases. These approaches have already been proven very useful in defining the effects of inhibitors, growth factors, nutrients, ubiquitination, and different proteasome activators on overall proteolysis and on substrate flux through the proteasomal and lysosomal pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  CAS  PubMed  Google Scholar 

  2. Klionsky DJ, Ohsumi Y (1999) Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol 15:1–32. https://doi.org/10.1146/annurev.cellbio.15.1.1

    Article  CAS  PubMed  Google Scholar 

  3. Myeku N, Clelland CL, Emrani S, Kukushkin NV, Yu WH et al (2016) Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat Med 22(1):46–53. https://doi.org/10.1038/nm.4011

    Article  CAS  PubMed  Google Scholar 

  4. Zhao J, Brault JJ, Schild A, Cao P, Sandri M et al (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6(6):472–483. https://doi.org/10.1016/j.cmet.2007.11.004

    Article  CAS  PubMed  Google Scholar 

  5. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E et al (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117(3):399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Demo SD, Kirk CJ, Aujay MA, Buchholz TJ, Dajee M et al (2007) Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 67(13):6383–6391

    Article  CAS  PubMed  Google Scholar 

  7. Cusack JC Jr, Liu R, Xia L, Chao TH, Pien C et al (2006) NPI-0052 enhances tumoricidal response to conventional cancer therapy in a colon cancer model. Clin Cancer Res 12(22):6758–6764

    Article  CAS  PubMed  Google Scholar 

  8. Petroski MD (2008) The ubiquitin system, disease, and drug discovery. BMC Biochem 9(Suppl 1):S7

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8(8):739–758

    Article  CAS  PubMed  Google Scholar 

  10. Gu C, Kolodziejek I, Misas-Villamil J, Shindo T, Colby T et al (2010) Proteasome activity profiling: a simple, robust and versatile method revealing subunit-selective inhibitors and cytoplasmic, defense-induced proteasome activities. Plant J 62(1):160–170. https://doi.org/10.1111/j.1365-313X.2009.04122.x

    Article  CAS  PubMed  Google Scholar 

  11. de Bruin G, Xin BT, Florea BI, Overkleeft HS (2016) Proteasome subunit selective activity-based probes report on proteasome core particle composition in a native polyacrylamide gel electrophoresis fluorescence-resonance energy transfer assay. J Am Chem Soc 138(31):9874–9880. https://doi.org/10.1021/jacs.6b04207

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka K (1994) Role of proteasomes modified by interferon-gamma in antigen processing. J Leukoc Biol 56(5):571–575

    Article  CAS  PubMed  Google Scholar 

  13. Peth A, Besche HC, Goldberg AL (2009) Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. Mol Cell 36(5):794–804. https://doi.org/10.1016/j.molcel.2009.11.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Collins GA, Goldberg AL (2017) The logic of the 26S proteasome. Cell 169(5):792–806. https://doi.org/10.1016/j.cell.2017.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao J, Goldberg AL (2016) Coordinate regulation of autophagy and the ubiquitin proteasome system by MTOR. Autophagy 12(10):1967–1970. https://doi.org/10.1080/15548627.2016.1205770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222. https://doi.org/10.1080/15548627.2015.1100356

    Article  PubMed  PubMed Central  Google Scholar 

  17. Guo X, Wang X, Wang Z, Banerjee S, Yang J et al (2016) Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol 18(2):202–212. https://doi.org/10.1038/ncb3289

    Article  CAS  PubMed  Google Scholar 

  18. Lokireddy S, Kukushkin NV, Goldberg AL (2015) cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc Natl Acad Sci U S A 112(52):E7176–E7185. https://doi.org/10.1073/pnas.1522332112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kisselev AF, Callard A, Goldberg AL (2006) Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem 281(13):8582–8590. https://doi.org/10.1074/jbc.M509043200

    Article  CAS  PubMed  Google Scholar 

  20. Goldberg AL (1972) Degradation of abnormal proteins in Escherichia coli (protein breakdown-protein structure-mistranslation-amino acid analogs-puromycin). Proc Natl Acad Sci U S A 69(2):422–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goldberg AL, Dice JF (1974) Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem 43(0):835–869. https://doi.org/10.1146/annurev.bi.43.070174.004155

    Article  CAS  PubMed  Google Scholar 

  22. Goldberg AL (1971) A role of aminoacyl-tRNA in the regulation of protein breakdown in Escherichia coli. Proc Natl Acad Sci U S A 68(2):362–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Etlinger JD, Goldberg AL (1977) A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc Natl Acad Sci U S A 74(1):54–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goldberg AL, Jablecki C, Li JB (1974) Trophic functions of the neuron. 3. Mechanisms of neurotrophic interactions. Effects of use and disuse on amino acid transport and protein turnover in muscle. Ann N Y Acad Sci 228:190–201

    Article  CAS  PubMed  Google Scholar 

  25. Cohen S, Nathan JA, Goldberg AL (2015) Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 14(1):58–74. https://doi.org/10.1038/nrd4467

    Article  CAS  PubMed  Google Scholar 

  26. Lecker SH, Goldberg AL, Mitch WE (2006) Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17(7):1807–1819. https://doi.org/10.1681/ASN.2006010083

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J, Wang J, Ng S, Lin Q, Shen HM (2014) Development of a novel method for quantification of autophagic protein degradation by AHA labeling. Autophagy 10(5):901–912. https://doi.org/10.4161/auto.28267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang J, Wang J, Lee YM, Lim TK, Lin Q et al (2017) Proteomic profiling of de novo protein synthesis in starvation-induced autophagy using bioorthogonal noncanonical amino acid tagging. Methods Enzymol 588:41–59. https://doi.org/10.1016/bs.mie.2016.09.075

    Article  CAS  PubMed  Google Scholar 

  29. McShane E, Sin C, Zauber H, Wells JN, Donnelly N et al (2016) Kinetic analysis of protein stability reveals age-dependent degradation. Cell 167(3):803–815 e821. https://doi.org/10.1016/j.cell.2016.09.015

    Article  CAS  PubMed  Google Scholar 

  30. Mordier S, Deval C, Bechet D, Tassa A, Ferrara M (2000) Leucine limitation induces autophagy and activation of lysosome-dependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin-independent signaling pathway. J Biol Chem 275(38):29900–29906. https://doi.org/10.1074/jbc.M003633200

    Article  CAS  PubMed  Google Scholar 

  31. Zhao J, Zhai B, Gygi SP, Goldberg AL (2015) mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc Natl Acad Sci U S A 112(52):15790–15797. https://doi.org/10.1073/pnas.1521919112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred L. Goldberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sha, Z., Zhao, J., Goldberg, A.L. (2018). Measuring the Overall Rate of Protein Breakdown in Cells and the Contributions of the Ubiquitin-Proteasome and Autophagy-Lysosomal Pathways. In: Mayor, T., Kleiger, G. (eds) The Ubiquitin Proteasome System. Methods in Molecular Biology, vol 1844. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8706-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8706-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8705-4

  • Online ISBN: 978-1-4939-8706-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics