Skip to main content

Natural Cotransformation and Multiplex Genome Editing by Natural Transformation (MuGENT) of Vibrio cholerae

  • Protocol
  • First Online:
Vibrio Cholerae

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1839))

Abstract

Generating mutant strains is an essential component of microbial genetics. Natural genetic transformation, a process for the uptake and integration of foreign DNA, is shared by diverse microbial species and can be exploited for making mutant strains. Canonically, this process has been used to generate single mutants and sequentially to generate strains with multiple mutations. Recently, we have described a method for multiplex genome editing by natural transformation (MuGENT), which allows the generation of strains with multiple scarless mutations in a single step. Here, we provide a detailed description of the methods used for mutagenesis of the cholera pathogen Vibrio cholerae with a particular emphasis on mutagenesis via MuGENT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58(3):563–602 Epub 1994/09/01

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK (2005) Chitin induces natural competence in Vibrio cholerae. Science 310(5755):1824–1827. Epub 2005/12/17. https://doi.org/10.1126/science.1120096

    Article  PubMed  CAS  Google Scholar 

  3. Chen Y, Dai J, Morris JG Jr, Johnson JA (2010) Genetic analysis of the capsule polysaccharide (K antigen) and exopolysaccharide genes in pandemic Vibrio parahaemolyticus O3:K6. BMC Microbiol 10:274. Epub 2010/11/04. https://doi.org/10.1186/1471-2180-10-274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Gulig PA, Tucker MS, Thiaville PC, Joseph JL, Brown RN (2009) USER friendly cloning coupled with chitin-based natural transformation enables rapid mutagenesis of Vibrio vulnificus. Appl Environ Microbiol 75(15):4936–4949. Epub 2009/06/09. https://doi.org/10.1128/AEM.02564-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Pollack-Berti A, Wollenberg MS, Ruby EG (2010) Natural transformation of Vibrio fischeri requires tfoX and tfoY. Environ Microbiol 12(8):2302–2311. Epub 2010/08/01. https://doi.org/10.1111/j.1462-2920.2010.02250.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Blokesch M (2012) TransFLP—a method to genetically modify Vibrio cholerae based on natural transformation and FLP-recombination. J Vis Exp 68. Epub 2012/10/25. https://doi.org/10.3791/3761

  7. Dalia AB, Lazinski DW, Camilli A (2014) Identification of a membrane-bound transcriptional regulator that links chitin and natural competence in Vibrio cholerae. MBio 5(1):e01028-13. https://doi.org/10.1128/mBio.01028-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Dalia AB, Seed KD, Calderwood SB, Camilli A (2015) A globally distributed mobile genetic element inhibits natural transformation of Vibrio cholerae. Proc Natl Acad Sci U S A 112(33):10485–10490. https://doi.org/10.1073/pnas.1509097112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006 0008. Epub 2006/06/02. https://doi.org/10.1038/msb4100050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zhang Y, Buchholz F, Muyrers JP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20(2):123–128. https://doi.org/10.1038/2417

    Article  PubMed  CAS  Google Scholar 

  11. Sung CK, Li H, Claverys JP, Morrison DA (2001) An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl Environ Microbiol 67(11):5190–5196. https://doi.org/10.1128/AEM.67.11.5190-5196.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Erickson RJ, Copeland JC (1973) Congression of unlinked markers and genetic mapping in the transformation of Bacillus subtilis 168. Genetics 73(1):13–21 Epub 1973/01/01

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Dalia AB, McDonough E, Camilli A (2014) Multiplex genome editing by natural transformation. Proc Natl Acad Sci U S A 111(24):8937–8942. https://doi.org/10.1073/pnas.1406478111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Horton RM, Cai ZL, Ho SN, Pease LR (1990) Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8(5):528–535

    PubMed  CAS  Google Scholar 

  15. Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77(1):61–68. Epub 1989/04/15. https://doi.org/10.1016/0378-1119(89)90359-4

    Article  PubMed  CAS  Google Scholar 

  16. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR et al (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460(7257):894–898. Epub 2009/07/28. https://doi.org/10.1038/nature08187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cha RS, Zarbl H, Keohavong P, Thilly WG (1992) Mismatch amplification mutation assay (MAMA): application to the c-H-ras gene. PCR Methods Appl 2(1):14–20

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur B. Dalia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dalia, A.B. (2018). Natural Cotransformation and Multiplex Genome Editing by Natural Transformation (MuGENT) of Vibrio cholerae . In: Sikora, A. (eds) Vibrio Cholerae. Methods in Molecular Biology, vol 1839. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8685-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8685-9_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8684-2

  • Online ISBN: 978-1-4939-8685-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics