Skip to main content

Chemoenzymatic Synthesis of Nitrogen Polymers with Biomedical Applications Catalyzed by Lipases

  • Protocol
  • First Online:
Lipases and Phospholipases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1835))

Abstract

The application of Candida antarctica lipase B as catalyst in the synthesis of two examples of nitrogen polymers is described. Firstly, we report a novel linear polyamidoamine oligomer, obtained by polymerization of ethyl acrylate and N-methyl-1,3-diaminopropane, catalyzed by Candida antarctica lipase B immobilized on polypropylene. The second part of the chapter describes an efficient route for the synthesis of a novel β-peptoid oligomer with hydroxyalkyl pendant groups in the nitrogen atom, through the polymerization of ethyl N-(2-hydroxyethyl)-β-alaninate catalyzed by Candida antarctica lipase B physically adsorbed within a macroporous poly(methyl methacrylate-co-butyl methacrylate) resin. Moreover, two derivatives of the β-peptoid oligomer were prepared: by acetylation and by grafting polycaprolactone. This last process was performed through ring-opening polymerization of caprolactone from the β-peptoid pendant hydroxyl groups and afforded a brush copolymer. The products were blended with polycaprolactone to make films by solvent casting. The inclusion of the acyl derivatives of the β-peptoid to polycaprolactone affected the morphology of the film yielding micro- and nanostructured patterns. The obtained products showed biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shoda S, Kobayashi A, Kobayashi S (2016) Chapter 11. Production of polymers by white biotechnology. In: White biotechnology for sustainable chemistry. The Royal Society of Chemistry, London, pp 274–309. https://doi.org/10.1039/9781782624080-00274

    Chapter  Google Scholar 

  2. Shoda S-i, Uyama H, Kadokawa J-i, Kimura S, Kobayashi S (2016) Enzymes as green catalysts for precision macromolecular synthesis. Chem Rev 116(4):2307–2413. https://doi.org/10.1021/acs.chemrev.5b00472

    Article  CAS  PubMed  Google Scholar 

  3. Pellis A, Herrero Acero E, Gardossi L, Ferrario V, Guebitz GM (2016) Renewable building blocks for sustainable polyesters: new biotechnological routes for greener plastics. Polym Int 65(8):861–871. https://doi.org/10.1002/pi.5087

    Article  CAS  Google Scholar 

  4. Duchiron SW, Pollet E, Givry S, Avérous L (2017) Enzymatic synthesis of poly(ε-caprolactone-co-ε-thiocaprolactone). Eur Polym J 87:147–158. https://doi.org/10.1016/j.eurpolymj.2016.12.024

    Article  CAS  Google Scholar 

  5. Kobayashi S (2009) Recent developments in lipase-catalyzed synthesis of polyesters. Macromol Rapid Commun 30(4–5):237–266. https://doi.org/10.1002/marc.200800690

    Article  CAS  PubMed  Google Scholar 

  6. Garcia Linares G, Baldessari A (2013) Lipases as efficient catalysts in the synthesis of monomers and polymers with biomedical applications. Curr Org Chem 17(7):719–743

    Article  Google Scholar 

  7. Bi Y, Zhou H, Jia H, Wei P (2017) Polydopamine-mediated preparation of an enzyme-immobilized microreactor for the rapid production of wax ester. RSC Adv 7(20):12283–12291

    Article  CAS  Google Scholar 

  8. Poulhès F, Mouysset D, Gil G, Bertrand MP, Gastaldi S (2013) Speeding-up enzyme-catalyzed synthesis of polyamides using ω-amino-α-alkoxy-acetate as monomer. Polymer 54(14):3467–3471

    Article  CAS  Google Scholar 

  9. Corici L, Pellis A, Ferrario V, Ebert C, Cantone S, Gardossi L (2015) Understanding potentials and restrictions of solvent-free enzymatic polycondensation of Itaconic acid: an experimental and computational analysis. Adv Synth Catal 357(8):1763–1774. https://doi.org/10.1002/adsc.201500182

    Article  CAS  Google Scholar 

  10. Rustoy EM, Sato Y, Nonami H, Erra-Balsells R, Baldessari A (2007) Lipase-catalyzed synthesis and characterization of copolymers from ethyl acrylate as the only monomer starting material. Polymer 48(6):1517–1525

    Article  CAS  Google Scholar 

  11. Monsalve LN, Kaniz Fatema M, Nonami H, Erra-Balsells R, Baldessari A (2010) Lipase-catalyzed synthesis and characterization of a novel linear polyamidoamine oligomer. Polymer 51(14):2998–3005. https://doi.org/10.1016/j.polymer.2010.04.071

    Article  CAS  Google Scholar 

  12. Kadokawa JI, Kobayashi S (2010) Polymer synthesis by enzymatic catalysis. Curr Opin Chem Biol 14(2):145–153. https://doi.org/10.1016/j.cbpa.2009.11.020

    Article  CAS  PubMed  Google Scholar 

  13. Chanquia SN, Boscaro N, Alché L, Baldessari A, Liñares GG (2017) An efficient lipase-catalyzed synthesis of fatty acid derivatives of vanillylamine with Antiherpetic activity in acyclovir-resistant strains. ChemistrySelect 2(4):1537–1543

    Article  CAS  Google Scholar 

  14. García Liñares G, Antonela Zígolo M, Simonetti L, Longhi SA, Baldessari A (2015) Enzymatic synthesis of bile acid derivatives and biological evaluation against Trypanosoma cruzi. Bioorg Med Chem 23(15):4804–4814. https://doi.org/10.1016/j.bmc.2015.05.035

    Article  CAS  PubMed  Google Scholar 

  15. López-Iglesias M, Gotor-Fernández V (2015) Recent advances in biocatalytic promiscuity: hydrolase-catalyzed reactions for nonconventional transformations. Chem Rec 15(4):743–759. https://doi.org/10.1002/tcr.201500008

    Article  CAS  PubMed  Google Scholar 

  16. García Liñares G, Arroyo Mañez P, Baldessari A (2014) Lipase-catalyzed synthesis of substituted phenylacetamides: Hammett analysis and computational study of the enzymatic aminolysis. Eur J Org Chem 2014(29):6439–6450. https://doi.org/10.1002/ejoc.201402749

    Article  CAS  Google Scholar 

  17. Monsalve LN, Petroselli G, Erra-Ballsells R, Vázquez A, Baldessari A (2014) Chemoenzymatic synthesis of novel N-(2-hydroxyethyl)-β-peptoid oligomer derivatives and application to porous polycaprolactone films. Polym Int 63(8):1523–1530. https://doi.org/10.1002/pi.4660

    Article  CAS  Google Scholar 

  18. Kurtoglu YE, Mishra MK, Kannan S, Kannan RM (2010) Drug release characteristics of PAMAM dendrimer–drug conjugates with different linkers. Int J Pharm 384(1–2):189–194. https://doi.org/10.1016/j.ijpharm.2009.10.017

    Article  CAS  PubMed  Google Scholar 

  19. Ranucci E, Spagnoli G, Ferruti P, Sgouras D, Duncan R (1991) Poly(Amidoamine)s with potential as drug carriers: degradation and cellular toxicity. J Biomater Sci Polym Ed 2(4):303–315. https://doi.org/10.1163/156856291X00197

    Article  CAS  PubMed  Google Scholar 

  20. Khayat Z, Griffiths PC, Grillo I, Heenan RK, King SM, Duncan R (2006) Characterising the size and shape of polyamidoamines in solution as a function of pH using neutron scattering and pulsed-gradient spin-echo NMR. Int J Pharm 317(2):175–186. https://doi.org/10.1016/j.ijpharm.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  21. Ferruti P, Manzoni S, Richardson SCW, Duncan R, Pattrick NG, Mendichi R, Casolaro M (2000) Amphoteric linear poly(amido-amine)s as endosomolytic polymers: correlation between physicochemical and biological properties. Macromolecules 33(21):7793–7800. https://doi.org/10.1021/ma000378h

    Article  CAS  Google Scholar 

  22. Lai P-S, Lou P-J, Peng C-L, Pai C-L, Yen W-N, Huang M-Y, Young T-H, Shieh M-J (2007) Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy. J Control Release 122(1):39–46. https://doi.org/10.1016/j.jconrel.2007.06.012

    Article  CAS  PubMed  Google Scholar 

  23. Milhem OM, Myles C, McKeown NB, Attwood D, D’Emanuele A (2000) Polyamidoamine Starburst® dendrimers as solubility enhancers. Int J Pharm 197(1–2):239–241. https://doi.org/10.1016/S0378-5173(99)00463-9

    Article  CAS  PubMed  Google Scholar 

  24. Tanzi MC, Rusconi L, Barozzi C, Ferruti P, Angiolini L, Nocentini M, Barone V, Barbucci R (1984) Synthesis and characterization of piperazine-derived poly(amido-amine)s with different distributions of amido- and amino-groups along the macromolecular chain. Polymer 25(6):863–868. https://doi.org/10.1016/0032-3861(84)90019-3

    Article  CAS  Google Scholar 

  25. Hartmann L, Krause E, Antonietti M, Börner HG (2006) Solid-phase supported polymer synthesis of sequence-defined, multifunctional poly(amidoamines). Biomacromolecules 7(4):1239–1244. https://doi.org/10.1021/bm050884k

    Article  CAS  PubMed  Google Scholar 

  26. Pattrick NG, Richardson SCW, Casolaro M, Ferruti P, Duncan R (2001) Poly(amidoamine)-mediated intracytoplasmic delivery of ricin A-chain and gelonin. J Control Release 77(3):225–232. https://doi.org/10.1016/S0168-3659(01)00476-X

    Article  CAS  PubMed  Google Scholar 

  27. Gussoni M, Greco F, Ferruti P, Ranucci E, Ponti A, Zetta L (2008) Poly(amidoamine)s carrying TEMPO residues for NMR imaging applications. New J Chem 32(2):323–332. https://doi.org/10.1039/B712896G

    Article  CAS  Google Scholar 

  28. Ranucci E, Ferruti P, Suardi MA, Manfredi A (2007) Poly(amidoamine)s with 2-dithiopyridine side substituents as intermediates to peptide–polymer conjugates. Macromol Rapid Commun 28(11):1243–1250. https://doi.org/10.1002/marc.200700139

    Article  CAS  Google Scholar 

  29. Franchini J, Ranucci E, Ferruti P, Rossi M, Cavalli R (2006) Synthesis, physicochemical properties, and preliminary biological characterizations of a novel amphoteric agmatine-based poly(amidoamine) with RGD-like repeating units. Biomacromolecules 7(4):1215–1222. https://doi.org/10.1021/bm060054m

    Article  CAS  PubMed  Google Scholar 

  30. Ferruti P, Marchisio MA, Barbucci R (1985) Synthesis, physico-chemical properties and biomedical applications of poly(amidoamine)s. Polymer 26(9):1336–1348. https://doi.org/10.1016/0032-3861(85)90309-X

    Article  CAS  Google Scholar 

  31. Ferruti P (2013) Poly(amidoamine)s: past, present, and perspectives. J Polym Sci A Polym Chem 51(11):2319–2353. https://doi.org/10.1002/pola.26632

    Article  CAS  Google Scholar 

  32. Laursen JS, Engel-Andreasen J, Olsen CA (2015) β-peptoid foldamers at last. Acc Chem Res 48(10):2696–2704. https://doi.org/10.1021/acs.accounts.5b00257

    Article  CAS  PubMed  Google Scholar 

  33. Mándity IM, Fülöp F (2015) An overview of peptide and peptoid foldamers in medicinal chemistry. Expert Opin Drug Discovery 10(11):1163–1177. https://doi.org/10.1517/17460441.2015.1076790

    Article  CAS  Google Scholar 

  34. Lin S, Yu X, Tu Y, Xu H, Cheng SZD, Jia L (2010) Poly([small beta]-alanoid-block-[small beta]-alanine)s: synthesis via cobalt-catalyzed carbonylative polymerization and self-assembly. Chem Commun 46(24):4273–4275. https://doi.org/10.1039/C0CC00324G

    Article  CAS  Google Scholar 

  35. Jia L, Sun H, Shay JT, Allgeier AM, Hanton SD (2002) Living alternating copolymerization of N-alkylaziridines and carbon monoxide as a route for synthesis of poly-β-peptoids. J Am Chem Soc 124(25):7282–7283. https://doi.org/10.1021/ja0263691

    Article  CAS  PubMed  Google Scholar 

  36. Imamura Y, Watanabe N, Umezawa N, Iwatsubo T, Kato N, Tomita T, Higuchi T (2009) Inhibition of γ-secretase activity by helical β-peptide foldamers. J Am Chem Soc 131(21):7353–7359. https://doi.org/10.1021/ja9001458

    Article  CAS  PubMed  Google Scholar 

  37. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci B 49(12):832–864. https://doi.org/10.1002/polb.22259

    Article  CAS  Google Scholar 

  38. Plackett DV, Holm VK, Johansen P, Ndoni S, Nielsen PV, Sipilainen-Malm T, Södergård A, Verstichel S (2006) Characterization of L-polylactide and L-polylactide-polycaprolactone co-polymer films for use in cheese-packaging applications. Packag Technol Sci 19(1):1–24. https://doi.org/10.1002/pts.704

    Article  CAS  Google Scholar 

  39. Zhu Y, Gao C, Liu X, Shen J (2002) Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules 3(6):1312–1319

    Article  CAS  PubMed  Google Scholar 

  40. Ludueña LN, Alvarez VA, Vazquez A (2007) Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng A 460–461:121–129. https://doi.org/10.1016/j.msea.2007.01.104

    Article  CAS  Google Scholar 

  41. Miao Z-M, Cheng S-X, Zhang X-Z, Zhuo R-X (2005) Synthesis, characterization, and degradation behavior of amphiphilic poly-α,β-[N-(2-hydroxyethyl)-l-aspartamide]-g-poly(ε-caprolactone). Biomacromolecules 6(6):3449–3457. https://doi.org/10.1021/bm050551n

    Article  CAS  PubMed  Google Scholar 

  42. Yuan C, Lu H-C, Li Q-Z, Yang S, Zhao Q-L, Huang J, Wei L-H, Ma Z (2012) Synthesis of well-defined amphiphilic polymethylene-b-poly(ε-caprolactone)-b-poly(acrylic acid) triblock copolymer via a combination of polyhomologation, ring-opening polymerization, and atom transfer radical polymerization. J Polym Sci A Polym Chem 50(12):2398–2405. https://doi.org/10.1002/pola.26015

    Article  CAS  Google Scholar 

  43. Ku SH, Lee SH, Park CB (2012) Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation. Biomaterials 33(26):6098–6104. https://doi.org/10.1016/j.biomaterials.2012.05.018

    Article  CAS  PubMed  Google Scholar 

  44. Monsalve LN, Gillanders F, Baldessari A (2012) Promiscuous behavior of Rhizomucor miehei lipase in the synthesis of N-substituted β-amino esters. Eur J Org Chem 2012(6):1164–1170. https://doi.org/10.1002/ejoc.201101624

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Baldessari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Baldessari, A., Liñares, G.G. (2018). Chemoenzymatic Synthesis of Nitrogen Polymers with Biomedical Applications Catalyzed by Lipases. In: Sandoval, G. (eds) Lipases and Phospholipases. Methods in Molecular Biology, vol 1835. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8672-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8672-9_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8671-2

  • Online ISBN: 978-1-4939-8672-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics