Skip to main content

Impact of Molecular Descriptors on Computational Models

  • Protocol
  • First Online:
Computational Chemogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1825))

Abstract

Molecular descriptors encode a wide variety of molecular information and have become the support of many contemporary chemoinformatic and bioinformatic applications. They grasp specific molecular features (e.g., geometry, shape, pharmacophores, or atomic properties) and directly affect computational models, in terms of outcome, performance, and applicability. This chapter aims to illustrate the impact of different molecular descriptors on the structural information captured and on the perceived chemical similarity among molecules. After introducing the fundamental concepts of molecular descriptor theory and application, a step-by-step retrospective virtual screening procedure guides users through the fundamental processing steps and discusses the impact of different types of molecular descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rocke AJ (1981) Kekulé, Butlerov, and the historiography of the theory of chemical structure. BJHS 14:27–57

    Article  Google Scholar 

  2. Kekulé A (1858) Ueber die Constitution und die Metamorphosen der chemischen Verbindungen und über die chemische Natur des Kohlenstoffs. Eur J Org Chem 106:129–159

    Google Scholar 

  3. Crum-Brown A, Fraser T (1868) On the connection between chemical constitution and physiological action. Part 1. On the physiological action of the ammonium bases, derived from Strychia, Brucia, Thebaia, Codeia, Morphia and Nicotia. Trans R Soc Edinburgh 25:151–203

    Article  Google Scholar 

  4. Richardson B (1869) Physiological research on alcohols. Med Times and Gazzette 2:703–706

    Google Scholar 

  5. Körner W (1874) Studi sulla Isomeria delle Così Dette Sostanze Aromatiche a Sei Atomi di Carbonio. Gazz Chim 4:242

    Google Scholar 

  6. Richet M (1893) Note sur le rapport entre la toxicité et les propriétés physiques des corps. C R Séances Soc Biol 45:775–776

    Google Scholar 

  7. Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics, vol 2 volumes. Wiley-VCH, Weinheim

    Book  Google Scholar 

  8. Kode SR (2016) Dragon (Software for Molecular Descriptor Calculation) Version 7.0–https://chm.kode-solutions.net

  9. Moriguchi I, Hirono S, Nakagome I et al (1994) Comparison of reliability of log P values for drugs calculated by several methods. Chem Pharm Bull 42:976–978

    Article  CAS  Google Scholar 

  10. Schneider G, Neidhart W, Giller T et al (1999) “Scaffold-hopping” by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Ed 38:2894–2896

    Article  CAS  Google Scholar 

  11. Fechner U, Franke L, Renner S et al (2003) Comparison of correlation vector methods for ligand-based similarity searching. J Comput Aided Mol Des 17:687–698

    Article  CAS  PubMed  Google Scholar 

  12. Todeschini R, Consonni V, Gramatica P (2009) Chemometrics in QSAR. In: Comprehensive chemometrics. Elsevier, Oxford, pp 129–172

    Chapter  Google Scholar 

  13. Johnson MA, Maggiora GM (1990) Concepts and applications of molecular similarity. Wiley, New York

    Google Scholar 

  14. Jacob L, Vert J-P (2008) Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 24:2149–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rognan D (2007) Chemogenomic approaches to rational drug design. Br J Pharmacol 152:38–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Strömbergsson H, Kleywegt GJ (2009) A chemogenomics view on protein-ligand spaces. BMC Bioinformatics 10:1–11

    Article  CAS  Google Scholar 

  17. Bender A, Glen RC (2004) Molecular similarity: a key technique in molecular informatics. Org Biomol Chem 2:3204–3218

    Article  CAS  PubMed  Google Scholar 

  18. Consonni V, Todeschini R, Pavan M (2002) Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. J Chem Inf Comput Sci 42:682–692

    Article  CAS  PubMed  Google Scholar 

  19. Eckert H, Bajorath J (2007) Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov Today 12:225–233

    Article  CAS  PubMed  Google Scholar 

  20. Reutlinger M, Koch CP, Reker D et al (2013) Chemically advanced template search (CATS) for scaffold-hopping and prospective target prediction for “orphan” molecules. Mol Informatics 32:133–138

    Article  CAS  Google Scholar 

  21. Geppert H, Vogt M, Bajorath J (2010) Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 50:205–216

    Article  CAS  PubMed  Google Scholar 

  22. Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4:649–663

    Article  CAS  PubMed  Google Scholar 

  23. Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219

    Article  CAS  PubMed  Google Scholar 

  24. Miyao T, Kaneko H, Funatsu K (2016) Ring system-based chemical graph generation for de novo molecular design. J Comput Aided Mol Des 30:425–446

    Article  CAS  PubMed  Google Scholar 

  25. Mansouri K, Ringsted T, Ballabio D et al (2013) Quantitative structure–activity relationship models for ready biodegradability of chemicals. J Chem Inf Model 53:867–878

    Article  CAS  PubMed  Google Scholar 

  26. Grisoni F, Consonni V, Vighi M et al (2016) Expert QSAR system for predicting the bioconcentration factor under the REACH regulation. Environ Res 148:507–512

    Article  CAS  PubMed  Google Scholar 

  27. Chaudhry Q, Piclin N, Cotterill J et al (2010) Global QSAR models of skin sensitisers for regulatory purposes. Chem Cent J 4(S5):1–6

    Google Scholar 

  28. Grisoni F, Reker D, Schneider P et al (2017) Matrix-based molecular descriptors for prospective virtual compound screening. Mol Informatics 36:1600091

    Article  CAS  Google Scholar 

  29. Tetko IV, Sushko I, Pandey AK et al (2008) Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. J Chem Inf Model 48:1733–1746

    Article  CAS  PubMed  Google Scholar 

  30. Zhu H, Tropsha A, Fourches D et al (2008) Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis. J Chem Inf Model 48:766–784

    Article  CAS  PubMed  Google Scholar 

  31. Brown JB, Niijima S, Shiraishi A, et al. (2012) Chemogenomic approach to comprehensive predictions of ligand-target interactions: a comparative study, In: 2012 I.E. International conference on bioinformatics and biomedicine workshops (BIBMW), pp. 136–142

    Google Scholar 

  32. Brown JB, Niijima S, Okuno Y (2013) Compound-protein interaction prediction within chemogenomics: theoretical concepts, practical usage, and future directions. Mol Informatics 32:906–921

    Article  CAS  Google Scholar 

  33. Fujita T, Winkler DA (2016) Understanding the roles of the two QSARs. J Chem Inf Model 56:269–274

    Article  CAS  PubMed  Google Scholar 

  34. Grisoni F, Consonni V, Vighi M et al (2016) Investigating the mechanisms of bioconcentration through QSAR classification trees. Environ Int 88:198–205

    Article  CAS  PubMed  Google Scholar 

  35. Todeschini R, Consonni V (2008) Handbook of molecular descriptors. John Wiley & Sons, Weinheim

    Google Scholar 

  36. Consonni V, Todeschini R (2012) Multivariate analysis of molecular descriptors. In: Dehmer M, Varmuza K, Bonchev D (eds) Statistical modelling of molecular descriptors in QSAR/QSPR. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 111–147

    Chapter  Google Scholar 

  37. Todeschini R, Consonni V (2008) Descriptors from molecular geometry. In: Gasteiger J (ed) Handbook of chemoinformatics: from data to knowledge, vol 4 Volumes. Wiley-VCH Verlag GmbH, Weinheim, Germany, pp 1004–1033

    Chapter  Google Scholar 

  38. Nettles JH, Jenkins JL, Bender A et al (2006) Bridging chemical and biological space: “target fishing” using 2D and 3D molecular descriptors. J Med Chem 49:6802–6810

    Article  CAS  PubMed  Google Scholar 

  39. Schuur JH, Selzer P, Gasteiger J (1996) The coding of the three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity. J Chem Inf Comput Sci 36:334–344

    Article  CAS  Google Scholar 

  40. Finkelmann AR, Göller AH, Schneider G (2016) Robust molecular representations for modelling and design derived from atomic partial charges. Chem Commun 52:681–684

    Article  CAS  Google Scholar 

  41. Rybinska A, Sosnowska A, Barycki M et al (2016) Geometry optimization method versus predictive ability in QSPR modeling for ionic liquids. J Comput Aided Mol Des 30:165–176

    Article  CAS  PubMed  Google Scholar 

  42. Nicklaus MC, Wang S, Driscoll JS et al (1995) Conformational changes of small molecules binding to proteins. Bioorg Med Chem 3:411–428

    Article  CAS  PubMed  Google Scholar 

  43. Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28:849–857

    Article  CAS  PubMed  Google Scholar 

  44. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  PubMed  Google Scholar 

  45. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  PubMed  Google Scholar 

  46. Hopfinger AJ, Wang S, Tokarski JS et al (1997) Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J Am Chem Soc 119:10509–10524

    Article  CAS  Google Scholar 

  47. Andrade CH, Pasqualoto KFM, Ferreira EI et al (2010) 4D-QSAR: perspectives in drug design. Molecules 15:3281–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vedani A, McMasters DR, Dobler M (2000) Multi-conformational ligand representation in 4D-QSAR: reducing the bias associated with ligand alignment. QSAR 19:149–161

    CAS  Google Scholar 

  49. Vedani A, Briem H, Dobler M et al (2000) Multiple-conformation and protonation-state representation in 4D-QSAR: the neurokinin-1 receptor system. J Med Chem 43:4416–4427

    Article  CAS  PubMed  Google Scholar 

  50. Vedani A, Dobler M (2002) 5D-QSAR: the key for simulating induced fit? J Med Chem 45:2139–2149

    Article  CAS  PubMed  Google Scholar 

  51. Vedani A, Dobler M, Lill MA (2005) Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor. J Med Chem 48:3700–3703

    Article  CAS  PubMed  Google Scholar 

  52. Fourches D, Muratov E, Tropsha A (2010) Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model 50:1189–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Olah M, Rad R, Ostopovici L et al (2008) WOMBAT and WOMBAT-PK: bioactivity databases for lead and drug discovery. In: Chemical biology: from small molecules to systems biology and drug design, vol 1-3. Wiley-VCH, New York, pp 760–786

    Google Scholar 

  54. Young D, Martin T, Venkatapathy R et al (2008) Are the chemical structures in your QSAR correct? QSAR 27:1337–1345

    Article  CAS  Google Scholar 

  55. Grisoni F, Consonni V, Villa S et al (2015) QSAR models for bioconcentration: is the increase in the complexity justified by more accurate predictions? Chemosphere 127:171–179

    Article  CAS  PubMed  Google Scholar 

  56. Mansouri K, Abdelaziz A, Rybacka A et al (2016) CERAPP: collaborative estrogen receptor activity prediction project. Environ Health Perspect 124:1023–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mansouri K, Grulke CM, Richard AM et al (2016) An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling. SAR QSAR Environ Res 27:911–937

    Article  CAS  Google Scholar 

  58. Willett P (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11:1046–1053

    Article  CAS  PubMed  Google Scholar 

  59. Cassotti M, Grisoni F, Nembri S et al (2016) Application of the weighted power-weakness ratio (wPWR) as a fusion rule in ligand–based virtual screening. MATCH Comm Math Comp Chem 76:359–376

    Google Scholar 

  60. Nembri S, Grisoni F, Consonni V et al (2016) In silico prediction of cytochrome P450-drug interaction: QSARs for CYP3A4 and CYP2C9. Int J Mol Sci 17:914

    Article  PubMed Central  Google Scholar 

  61. Ewing T, Baber JC, Feher M (2006) Novel 2D fingerprints for ligand-based virtual screening. J Chem Inf Model 46:2423–2431

    Article  CAS  PubMed  Google Scholar 

  62. Watson P (2008) Naïve bayes classification using 2D pharmacophore feature triplet vectors. J Chem Inf Model 48:166–178

    Article  CAS  PubMed  Google Scholar 

  63. Klon AE, Diller DJ (2007) Library fingerprints: a novel approach to the screening of virtual libraries. J Chem Inf Model 47:1354–1365

    Article  CAS  PubMed  Google Scholar 

  64. Geppert H, Bajorath J (2010) Advances in 2D fingerprint similarity searching. Expert Opin Drug Discovery 5:529–542

    Article  CAS  Google Scholar 

  65. Ballabio D, Consonni V, Mauri A et al (2014) A novel variable reduction method adapted from space-filling designs. Chemom Intell Lab Syst 136:147–154

    Article  CAS  Google Scholar 

  66. Fodor IK (2002) A survey of dimension reduction techniques, Technical Report UCRL-ID-148494, Lawrence Livermore National Laboratory

    Google Scholar 

  67. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  CAS  PubMed  Google Scholar 

  68. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441

    Article  Google Scholar 

  69. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Lond Edinb Dubl Phil Mag 2:559–572

    Article  Google Scholar 

  70. Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32:241–254

    Article  CAS  PubMed  Google Scholar 

  71. Arthur D, Vassilvitskii S (2007) k-means++: The advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics, pp. 1027–1035

    Google Scholar 

  72. Todeschini R, Ballabio D, Consonni V (2015) Distances and other dissimilarity measures in chemometrics. In: Encyclopedia of analytical chemistry. John Wiley & Sons, Ltd, Hoboken, pp 1–34

    Google Scholar 

  73. Truchon J-F, Bayly CI (2007) Evaluating virtual screening methods: good and bad metrics for the “early recognition” problem. J Chem Inf Model 47:488–508

    Article  CAS  PubMed  Google Scholar 

  74. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3:95–99

    Article  Google Scholar 

  75. Grisoni F, Cassotti M, Todeschini R (2014) Reshaped sequential replacement for variable selection in QSPR: comparison with other reference methods. J Chemom 28:249–259

    Article  CAS  Google Scholar 

  76. Cassotti M, Grisoni F, Todeschini R (2014) Reshaped sequential replacement algorithm: an efficient approach to variable selection. Chemom Intell Lab Syst 133:136–148

    Article  CAS  Google Scholar 

  77. Shen Q, Jiang J-H, Jiao C-X et al (2004) Modified particle swarm optimization algorithm for variable selection in MLR and PLS modeling: QSAR studies of antagonism of angiotensin II antagonists. Eur J Pharm Sci 22:145–152

    Article  CAS  PubMed  Google Scholar 

  78. Derksen S, Keselman HJ (1992) Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables. Br J Math Stat Psychol 45:265–282

    Article  Google Scholar 

  79. Cramer RD, Bunce JD, Patterson DE et al (1988) Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. QSAR 7:18–25

    Google Scholar 

  80. Todeschini R, Ballabio D, Grisoni F (2016) Beware of unreliable Q2! A comparative study of regression metrics for predictivity assessment of QSAR models. J Chem Inf Model 56:1905–1913

    Article  CAS  PubMed  Google Scholar 

  81. Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manag 45:427–437

    Article  Google Scholar 

  82. Berthold MR, Cebron N, Dill F et al (2009) KNIME - the Konstanz information miner: version 2.0 and beyond. SIGKDD Explor Newsl 11:26–31

    Article  Google Scholar 

  83. Warr WA (2012) Scientific workflow systems: pipeline pilot and KNIME. J Comput Aided Mol Des 26:801–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Python, https://www.python.org/

  85. R: The R Project for Statistical Computing, https://www.r-project.org/

  86. MATLAB (2016) R2016a, The MathWorks Inc., Natick, Massachusetts

    Google Scholar 

  87. Mysinger MM, Carchia M, Irwin JJ et al (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nishimura-Yabe C (1998) Aldose reductase in the polyol pathway: a potential target for the therapeutic intervention of diabetic complications, Nihon yakurigaku zasshi. Folia pharmacologica Japonica 111:137–145

    Article  CAS  PubMed  Google Scholar 

  89. Ramirez MA, Borja NL (2008) Epalrestat: an aldose reductase inhibitor for the treatment of diabetic neuropathy. Pharmacotherapy 28:646–655

    Article  CAS  PubMed  Google Scholar 

  90. Structure Checker ChemAxon, 2016. http://www.chemaxon.com

  91. Borg I, Groenen PJF (2005) Modern multidimensional scaling: theory and applications, 2nd edn. Springer Verlag, Berlin, Germany

    Google Scholar 

  92. Harris CJ, Stevens AP (2006) Chemogenomics: structuring the drug discovery process to gene families. Drug Discov Today 11:880–888

    Article  CAS  PubMed  Google Scholar 

  93. Birault V, Harris CJ, Le J et al (2006) Bringing kinases into focus: efficient drug design through the use of chemogenomic toolkits. Curr Med Chem 13:1735–1748

    Article  CAS  PubMed  Google Scholar 

  94. Brown JB (2013) Systems chemical biology via computational compound-protein interaction prediction: core ideas, translational validity, and important perspectives, Invited Lecture at the Autumn School of Chemoinformatics, Nara, Japan

    Google Scholar 

  95. KNIME | Trusted Community Contributions, https://tech.knime.org/trusted-community-contributions

  96. KNIME | Cheminformatics Extensions, https://tech.knime.org/cheminformatics-extensions

  97. KNIME | Node description for MDS, https://www.knime.org/files/nodedetails/_mining_mds_MDS.html

  98. Daylight Theory: SMILES, http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html

  99. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36

    Article  CAS  Google Scholar 

  100. O’Boyle NM, Banck M, James CA et al (2011) Open babel: an open chemical toolbox. J Cheminform 3:1–14

    Article  CAS  Google Scholar 

  101. Mauri A, Consonni V, Todeschini R (2016) Molecular descriptors. In: Leszczynski J (ed) Handbook of computational chemistry. Springer, Netherlands, pp 1–29

    Google Scholar 

  102. Schneider N, Sayle RA, Landrum GA (2015) Get your atoms in order—an open-source implementation of a novel and robust molecular canonicalization algorithm. J Chem Inf Model 55:2111–2120

    Article  CAS  PubMed  Google Scholar 

  103. Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm for generation of unique SMILES notation. J Chem Inf Comput Sci 29:97–101

    Article  CAS  Google Scholar 

  104. O’Boyle NM (2012) Towards a universal SMILES representation–a standard method to generate canonical SMILES based on the InChI. J Chem 4:1–14

    Article  CAS  Google Scholar 

  105. Koichi S, Iwata S, Uno T et al (2007) Algorithm for advanced canonical coding of planar chemical structures that considers stereochemical and symmetric information. J Chem Inf Model 47:1734–1746

    Article  CAS  PubMed  Google Scholar 

  106. RDKit: Open-source cheminformatics; http://www.rdkit.org,

  107. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  108. Lipinski CA, Lombardo F, Dominy BW et al (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  109. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754

    Article  CAS  PubMed  Google Scholar 

  110. Carhart RE, Smith DH, Venkataraghavan R (1985) Atom pairs as molecular features in structure-activity studies: definition and applications. J Chem Inf Comput Sci 25:64–73

    Article  CAS  Google Scholar 

  111. KNIME | Node description for Correlation Filter, https://www.knime.org/files/nodedetails/_statistics_Correlation_Filter.html

  112. Todeschini R, Ballabio D, Consonni V et al (2016) A new concept of higher-order similarity and the role of distance/similarity measures in local classification methods. Chemom Intell Lab Syst 157:50–57

    Article  CAS  Google Scholar 

  113. Todeschini R, Consonni V, Xiang H et al (2012) Similarity coefficients for binary chemoinformatics data: overview and extended comparison using simulated and real data sets. J Chem Inf Model 52:2884–2901

    Article  CAS  PubMed  Google Scholar 

  114. Hvidsten TR, Kryshtafovych A, Fidelis K (2009) Local descriptors of protein structure: a systematic analysis of the sequence-structure relationship in proteins using short- and long-range interactions. Proteins 75:870–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Henschel A, Winter C, Kim WK et al (2007) Using structural motif descriptors for sequence-based binding site prediction. BMC Bioinformatics 8:S5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li ZR, Lin HH, Han LY et al (2006) PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res 34:W32–W37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. O’Boyle NM, Banck M, James CA et al (2011) Open babel: an open chemical toolbox. J Chem 3:33

    Article  CAS  Google Scholar 

  118. Dalby A, Nourse JG, Hounshell WD et al (1992) Description of several chemical structure file formats used by computer programs developed at molecular design limited. J Chem Inf Comput Sci 32:244–255

    Article  CAS  Google Scholar 

  119. Marvin Sketch 5.1.11 ChemAxon, 2013. http://www.chemaxon.com

  120. NCI/CADD Group (2013), Chemical Identifier Resolver. Available at: http://cactus.nci.nih.gov/chemical/ structure

  121. Getting Started with the RDKit in Python—The RDKit 2016.09.1 documentation, http://www.rdkit.org/docs/GettingStartedInPython.html#list-of-available-descriptors

  122. Steinbeck C, Han Y, Kuhn S et al (2003) The chemistry development kit (CDK): an open-source java library for chemo- and bioinformatics. J Chem Inf Comput Sci 43:493–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Steinbeck C, Hoppe C, Kuhn S et al (2006) Recent developments of the chemistry development kit (CDK)-an open-source java library for chemo-and bioinformatics. Curr Pharm Des 12:2111–2120

    Article  CAS  PubMed  Google Scholar 

  124. Chemical Computing Group Inc. (2013) Molecular Operating Environment (MOE), 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7

    Google Scholar 

  125. Hong H, Xie Q, Ge W et al (2008) Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J Chem Inf Model 48:1337–1344

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Grisoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Grisoni, F., Consonni, V., Todeschini, R. (2018). Impact of Molecular Descriptors on Computational Models. In: Brown, J. (eds) Computational Chemogenomics. Methods in Molecular Biology, vol 1825. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8639-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8639-2_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8638-5

  • Online ISBN: 978-1-4939-8639-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics