Skip to main content

Post-renal Acute Kidney Injury: Epidemiology, Presentation, Pathophysiology, Diagnosis, and Management

  • Chapter
  • First Online:
Core Concepts in Acute Kidney Injury

Abstract

Postobstructive renal damage has many etiologies but can be simply defined as a mechanical inability for urine to pass through the urinary system resulting in kidney damage. This obstruction can occur at any point along the urinary tract, from the tip of the urethra to within the kidney itself. Etiologies can be intrinsic and extrinsic and partial and complete and can occur at any time. The causes of post-renal acute kidney injury may be divided anatomically based on location. Upper tract causes of post-renal obstruction include renal etiologies and ureteral etiologies. Lower tract causes of post-renal obstruction include bladder, prostatic, and urethral etiologies. Obstructive uropathy often presents as some combination of flank or abdominal pain, hematuria, uremic symptoms, occasionally signs of infection when this is present, or rarely decreased urine output. Identification of elevated creatinine and/or hydronephrosis on routine surveillance or workup of other issues can also lead to the diagnosis. The preferred screening test for hydronephrosis is renal ultrasound, but renal radionuclide studies may be indicated if contrast is contraindicated or the remaining function of the kidney is in question. Management of post-renal acute kidney injury involves first relieving the obstruction, and this depends upon the anatomic location and etiology. Treatments are grouped based on anatomic location.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gottlieb RH, Weinberg EP, Rubens DJ, Monk RD, Grossman EB. Renal sonography: can it be used more selectively in the setting of an elevated serum creatinine level? Am J Kidney Dis. 1997;29(3):362–7.

    Article  CAS  PubMed  Google Scholar 

  2. Bell ET. Renal diseases. Philadelphia: Lea & Febiger; 1950.

    Google Scholar 

  3. Campbell MF. Urinary obstruction. In: Campbell MF, Harrison JH, editors. Urology. Philadelphia: Saunders; 1970. p. 1772–93.

    Google Scholar 

  4. Tan PH, Chiang GS, Tay AH. Pathology of urinary tract malformations in a paediatric autopsy series. Ann Acad Med Singap. 1994;23:838–43.

    CAS  PubMed  Google Scholar 

  5. Allen JT, Vaughan ED, Gillenwater JY. The effect of indomethacin on renal blood flow and urethral pressure in unilateral ureteral obstruction in a awake dogs. Investig Urol. 1978;15:324–7.

    CAS  Google Scholar 

  6. Gaudio KM, Siegel NJ, Hayslett JP, Kashgarian M. Renal perfusion and intratubular pressure during ureteral occlusion in the rat. Am J Phys. 1980;238(3):F205–9.

    CAS  Google Scholar 

  7. Salvemini D, Seibert K, Masferrer JL, Misko TP, Currie MG, Needleman P. Endogenous nitric oxide enhances prostaglandin production in a model of renal inflammation. J Clin Invest. 1994;93(5):1940–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miyajima A, Chen J, Poppas DP, Vaughan ED Jr, Felsen D. Role of nitric oxide in renal tubular apoptosis of unilateral ureteral obstruction. Kidney Int. 2001;59(4):1290–303.

    Article  CAS  PubMed  Google Scholar 

  9. Lanzone JA, Gulmi FA, Chou SY, et al. Renal hemodynamics in acute unilateral ureteral obstruction: contribution of endothelium-derived relaxing factor. J Urol. 1995;153:2055–9.

    Article  CAS  PubMed  Google Scholar 

  10. Wang W, Luo R, Lin Y, Wang F, Zheng P, Levi M, Yang T, Li C. Aliskiren restores renal AQP2 expression during unilateral ureteral obstruction by inhibiting the inflammasome. Am J Physiol Renal Physiol. 2015;308(8):F910–22. https://doi.org/10.1152/ajprenal.00649.2014; Epub 2015 Feb 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Siegel NJ, Feldman RA, Lytton B, Hayslett JP, Kashgarian M. Renal cortical blood flow distribution in obstructive nephropathy in rats. Circ Res. 1977;40(4):379–84.

    Article  CAS  PubMed  Google Scholar 

  12. Ichikawa I, Purkerson ML, Yates J, Klahr S. Dietary protein intake conditions the degree of renal vasoconstriction in acute renal failure caused by ureteral obstruction. Am J Phys. 1985;249(1 Pt 2):F54–61.

    CAS  Google Scholar 

  13. Klotman PE, Smith SR, Volpp BD, Coffman TM, Yarger WE. Thromboxane synthetase inhibition improves function of hydronephrotic rat kidneys. Am J Phys. 1986;250(2 Pt 2):F282–7.

    CAS  Google Scholar 

  14. Loo MH, Egan D, Vaughan ED Jr, Marion D, Felsen D, Weisman S. The effect of the thromboxane A2 synthesis inhibitor OKY-046 on renal function in rabbits following release of unilateral ureteral obstruction. J Urol. 1987;137(3):571–6.

    Article  CAS  PubMed  Google Scholar 

  15. Purkerson ML, Blaine EH, Stokes TJ, et al. Role of atrial peptide in the natriuresis and diuresis that follows relief of obstruction in rat. Am J Phys. 1989;256:F583–9.

    CAS  Google Scholar 

  16. Schreiner GF, Harris KP, Purkerson ML, et al. Immunological aspects of acute ureteral obstruction: immune cell infiltrate in the kidney. Kidney Int. 1988;34:487–93.

    Article  CAS  PubMed  Google Scholar 

  17. Harris KP, Schreiner GF, Klahr S. Effect of leukocyte depletion on the function of the postobstructed kidney in the rat. Kidney Int. 1989;36(2):210–5.

    Article  CAS  PubMed  Google Scholar 

  18. Kelleher JP, Shah V, Godley ML, Wakefield AJ, Gordon I, Ransley PG, Snell ME, Risdon RA. Urinary endothelin (ET1) in complete ureteric obstruction in the miniature pig. Urol Res. 1992;20(1):63–5.

    Article  CAS  PubMed  Google Scholar 

  19. Syed N, Gulmi FA, Chou SY, Mooppan UM, Kim H. Renal actions of endothelin-1 under endothelin receptor blockade by BE-18257B. J Urol. 1998;159(2):563–6.

    Article  CAS  PubMed  Google Scholar 

  20. Harris RH, Yarger WE. The pathogenesis of post-obstructive diuresis: the role of circulating natriuretic and diuretic factors, including urea. J Clin Invest. 1975;56:880–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tanner GA. Tubuloglomerular feedback after nephron or ureteral obstruction. Am J Phys. 1985;248(5 Pt 2):F688–97.

    CAS  Google Scholar 

  22. Gulmi FA, Matthews GJ, Marion D, et al. Volume expansion enhances the recovery of renal function and prolongs the diuresis and natriuresis after release of bilateral ureteral obstruction: a possible role for atrial natriuretic peptide. J Urol. 1995;153:1276–83.

    Article  CAS  PubMed  Google Scholar 

  23. Reyes AA, Klahr S. Renal function after release of ureteral obstruction: role of endothelin and the renal artery endothelium. Kidney Int. 1992;42:632–8.

    Article  CAS  PubMed  Google Scholar 

  24. Jaenike JR. The renal functional defect of postobstructive nephyropathy: the effects of bilateral ureteral obstruction in the rat. J Clin Invest. 1972;51:2999–3006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Solez K, Ponchak S, Buono RA, et al. Inner medullary plasma flow in the kidney with ureteral obstruction. Am J Phys. 1976;231:1315–21.

    CAS  Google Scholar 

  26. Yarger WE, Aynedjian HS, Bank N. A micropuncture study of postobstructive diuresis in the rat. J Clin Invest. 1972;51(3):625–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li P, Oparil S, Novak L, Cao X, Shi W, Lucas J, Chen YF. ANP signaling inhibits TGF-beta-induced Smad2 and Smad3 nuclear translocation and extracellular matrix expression in rat pulmonary arterial smooth muscle cells. J Appl Physiol (1985). 2007;102(1):390–8; Epub 2006 Oct 12.

    Article  CAS  Google Scholar 

  28. Stecker JF, Gillenwater JY. Experimental partial ureteral obstruction. I. Alteration in renal function. Investig Urol. 1971;8:377–85.

    CAS  Google Scholar 

  29. Middleton GW, Beamon CR, Panko WB, Gillenwater JY. Effects of ureteral obstruction on the renal metabolism of alpha-ketoglutarate and other substrates in vivo. Investig Urol. 1977;14(4):255–62.

    CAS  Google Scholar 

  30. Nito H, Descoeudres C, Kurokawa K, Massry SG. Effect of unilateral obstruction on renal cell metabolism and function. J Lab Clin Med. 1978;91(1):60–71. No abstract available.

    CAS  PubMed  Google Scholar 

  31. Klahr S, Schwab SJ, Stokes TJ. Metabolic adaptations of the nephron in renal disease. Kidney Int. 1986;29(1):80–9. Review. No abstract available.

    Article  CAS  PubMed  Google Scholar 

  32. Nilsson L, Madsen K, Topcu SO, Jensen BL, Frøkiær J, Nørregaard R. Disruption of cyclooxygenase-2 prevents downregulation of cortical AQP2 and AQP3 in response to bilateral ureteral obstruction in the mouse. Am J Physiol Renal Physiol. 2012;302(11):F1430–9. https://doi.org/10.1152/ajprenal.00682.2011; Epub 2012 Mar 7.

    Article  CAS  PubMed  Google Scholar 

  33. Li C, Wang W, Kwon TH, et al. Downregulation of AQP1, -2, and -3 after ureteral obstruction is associated with a long-term urine-concentrating defect. Am J Physiol Renal Physiol. 2001;281:F163–71.

    Article  CAS  PubMed  Google Scholar 

  34. Jaenike JR, Bray GA. Effects of acute transitory urinary obstruction in the dog. Am J Phys. 1960;199:1219–22.

    CAS  Google Scholar 

  35. Zeidel ML. Hormonal regulation of inner medullary collecting duct sodium transport. Am J Phys. 1993;265(2 Pt 2):F159–73. Review.

    CAS  Google Scholar 

  36. Rokaw MD, Sarac E, Lechman E, West M, Angeski J, Johnson JP, Zeidel ML. Chronic regulation of transepithelial Na+ transport by the rate of apical Na+ entry. Am J Phys. 1996;270(2 Pt 1):C600–7.

    Article  CAS  Google Scholar 

  37. Kwon TH, Laursen UH, Marples D, Maunsbach AB, Knepper MA, Frokiaer J, Nielsen S. Altered expression of renal AQPs and Na(+) transporters in rats with lithium-induced NDI. Am J Physiol Renal Physiol. 2000;279(3):F552–64.

    Article  CAS  PubMed  Google Scholar 

  38. Sonnenberg H, Wilson DR. The role of the medullary collecting ducts in postobstructive diuresis. J Clin Invest. 1976;57:1564–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Purcell H, Bastani B, Harris KP, Hemken P, Klahr S, Gluck S. Cellular distribution of H(+)-ATPase following acute unilateral ureteral obstruction in rats. Am J Phys. 1991;261(3 Pt 2):F365–76.

    CAS  Google Scholar 

  40. Valles PG, Manucha WA. Kidney Int. 2000;58:1641–51.

    Article  CAS  PubMed  Google Scholar 

  41. Wang CJ, Huang SW, Chang CH. Efficacy of an alpha1 blocker in expulsive therapy of lower ureteral stones. J Enourol. 2008;22:41–6.

    Article  Google Scholar 

  42. Ellenbogen PH, Scheible FW, Talner LB, Leopold GR. Sensitivity of gray scale ultrasound in detecting urinary tract obstruction. AJR Am J Roentgenol. 1978;130(4):731.

    Article  CAS  PubMed  Google Scholar 

  43. Kamholtz RG, Cronan JJ, Dorfman GS. Obstruction and the minimally dilated renal collecting system: US evaluation. Radiology. 1989;170(1 Pt 1):51.

    Article  CAS  PubMed  Google Scholar 

  44. Lupton EW, George NJ. The Whitaker test: 35 years on. BJU Int. 2010;105(1):94–100.

    Article  Google Scholar 

  45. Oates J, O’Flynn K. The Whitaker test. In: Payne S, Eardley I, O’Flynn K, editors. Imaging and technology in urology. London: Springer; 2012. p. 157–60.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jairam R. Eswara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raup, V.T., Chang, S.L., Eswara, J.R. (2018). Post-renal Acute Kidney Injury: Epidemiology, Presentation, Pathophysiology, Diagnosis, and Management. In: Waikar, S., Murray, P., Singh, A. (eds) Core Concepts in Acute Kidney Injury. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8628-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8628-6_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8626-2

  • Online ISBN: 978-1-4939-8628-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics