Skip to main content

Virus-Mediated Overexpression of Vomeronasal Receptors and Functional Assessment by Live-Cell Calcium Imaging

  • Protocol
  • First Online:
Olfactory Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1820))

Abstract

The mammalian vomeronasal organ (VNO) detects and transduces molecular cues emitted by other individuals that influence social behaviors such as mating and aggression. The detection of these chemosignals involves recognition of specific ligands by dedicated G protein-coupled receptors. Here, we describe recent methodological advances using a herpes virus-based amplicon delivery system to overexpress vomeronasal receptor genes in native, dissociated VNO neurons and to characterize corresponding cell responses to potential ligands through Ca2+ imaging. This methodology enables us to analyze the response patterns of single vomeronasal receptors to a large number of chemosensory stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chamero P, Leinders-Zufall T, Zufall F (2012) From genes to social communication: molecular sensing by the vomeronasal organ. Trends Neurosci 35:597–606. https://doi.org/10.1016/j.tins.2012.04.011

    Article  PubMed  CAS  Google Scholar 

  2. Leinders-Zufall T, Lane AP, Puche AC et al (2000) Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405:792–796. https://doi.org/10.1038/35015572

    Article  PubMed  CAS  Google Scholar 

  3. Leinders-Zufall T, Brennan P, Widmayer P et al (2004) MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306:1033–1037. https://doi.org/10.1126/science.1102818

    Article  PubMed  CAS  Google Scholar 

  4. Dulac C, Axel R (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83:195–206

    Article  PubMed  CAS  Google Scholar 

  5. Herrada G, Dulac C (1997) A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90:763–773

    Article  PubMed  CAS  Google Scholar 

  6. Matsunami H, Buck LB (1997) A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90:775–784

    Article  PubMed  CAS  Google Scholar 

  7. Ryba NJ, Tirindelli R (1997) A new multigene family of putative pheromone receptors. Neuron 19:371–379

    Article  PubMed  CAS  Google Scholar 

  8. Liberles SD, Horowitz LF, Kuang D et al (2009) Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci U S A 106:9842–9847. https://doi.org/10.1073/pnas.0904464106

    Article  PubMed  PubMed Central  Google Scholar 

  9. Riviere S, Challet L, Fluegge D et al (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459:574–577. https://doi.org/10.1038/nature08029

    Article  PubMed  CAS  Google Scholar 

  10. Roppolo D, Vollery S, Kan C-D et al (2007) Gene cluster lock after pheromone receptor gene choice. EMBO J 26:3423–3430. https://doi.org/10.1038/sj.emboj.7601782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Silvotti L, Moiani A, Gatti R, Tirindelli R (2007) Combinatorial co-expression of pheromone receptors, V2Rs. J Neurochem 103:1753–1763. https://doi.org/10.1111/j.1471-4159.2007.04877.x

    Article  PubMed  CAS  Google Scholar 

  12. Ishii T, Mombaerts P (2011) Coordinated coexpression of two vomeronasal receptor V2R genes per neuron in the mouse. Mol Cell Neurosci 46:397–408. https://doi.org/10.1016/j.mcn.2010.11.002

    Article  PubMed  CAS  Google Scholar 

  13. Leinders-Zufall T, Ishii T, Chamero P et al (2014) A family of nonclassical class I MHC genes contributes to ultrasensitive chemodetection by mouse vomeronasal sensory neurons. J Neurosci 34:5121–5133. https://doi.org/10.1523/JNEUROSCI.0186-14.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sturm T, Leinders-Zufall T, Macek B et al (2013) Mouse urinary peptides provide a molecular basis for genotype discrimination by nasal sensory neurons. Nat Commun 4:1616. https://doi.org/10.1038/ncomms2610

    Article  CAS  PubMed  Google Scholar 

  15. Dey S, Matsunami H (2011) Calreticulin chaperones regulate functional expression of vomeronasal type 2 pheromone receptors. Proc Natl Acad Sci U S A 108:16651–16656. https://doi.org/10.1073/pnas.1018140108

    Article  PubMed  PubMed Central  Google Scholar 

  16. Isogai Y, Si S, Pont-Lezica L et al (2011) Molecular organization of vomeronasal chemoreception. Nature 478:241–245. https://doi.org/10.1038/nature10437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Boschat C, Pelofi C, Randin O et al (2002) Pheromone detection mediated by a V1r vomeronasal receptor. Nat Neurosci 5:1261–1262. https://doi.org/10.1038/nn978

    Article  CAS  PubMed  Google Scholar 

  18. Haga-Yamanaka S, Ma L, He J et al (2014) Integrated action of pheromone signals in promoting courtship behavior in male mice. eLife 3:e03025. https://doi.org/10.7554/eLife.03025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Leinders-Zufall T, Ishii T, Mombaerts P et al (2009) Structural requirements for the activation of vomeronasal sensory neurons by MHC peptides. Nat Neurosci 12:1551–1558. https://doi.org/10.1038/nn.2452

    Article  CAS  PubMed  Google Scholar 

  20. Del Punta K, Leinders-Zufall T, Rodriguez I et al (2002) Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 419:70–74. https://doi.org/10.1038/nature00955

    Article  PubMed  CAS  Google Scholar 

  21. Haga S, Hattori T, Sato T et al (2010) The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature 466:118–122. https://doi.org/10.1038/nature09142

    Article  PubMed  CAS  Google Scholar 

  22. Stein B, Alonso MT, Zufall F et al (2016) Functional overexpression of vomeronasal receptors using a herpes simplex virus type 1 (HSV-1)-derived amplicon. PLoS One 11:e0156092. https://doi.org/10.1371/journal.pone.0156092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chamero P, Weiss J, Alonso MT et al (2017) Type 3 inositol 1,4,5-trisphosphate receptor is dispensable for sensory activation of the mammalian vomeronasal organ. Sci Rep 7:10260. https://doi.org/10.1038/s41598-017-09638-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Mori I, Goshima F, Ito H et al (2005) The vomeronasal chemosensory system as a route of neuroinvasion by herpes simplex virus. Virology 334:51–58. https://doi.org/10.1016/j.virol.2005.01.023

    Article  PubMed  CAS  Google Scholar 

  25. Cuchet D, Potel C, Thomas J, Epstein AL (2007) HSV-1 amplicon vectors: a promising and versatile tool for gene delivery. Expert Opin Biol Ther 7:975–995. https://doi.org/10.1517/14712598.7.7.975

    Article  PubMed  CAS  Google Scholar 

  26. Chamero P, Marton TF, Logan DW et al (2007) Identification of protein pheromones that promote aggressive behaviour. Nature 450:899–902. https://doi.org/10.1038/nature05997

    Article  PubMed  CAS  Google Scholar 

  27. He J, Ma L, Kim S et al (2008) Encoding gender and individual information in the mouse vomeronasal organ. Science 320:535–538. https://doi.org/10.1126/science.1154476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Turaga D, Holy TE (2012) Organization of vomeronasal sensory coding revealed by fast volumetric calcium imaging. J Neurosci 32:1612–1621. https://doi.org/10.1523/JNEUROSCI.5339-11.2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chamero P, Katsoulidou V, Hendrix P et al (2011) G protein G(alpha)o is essential for vomeronasal function and aggressive behavior in mice. Proc Natl Acad Sci U S A 108:12898–12903. https://doi.org/10.1073/pnas.1107770108

    Article  PubMed  PubMed Central  Google Scholar 

  30. Alonso MT, Chamero P, Villalobos C, Garcia-Sancho J (2003) Fura-2 antagonises calcium-induced calcium release. Cell Calcium 33:27–35

    Article  PubMed  CAS  Google Scholar 

  31. Smith IL, Hardwicke MA, Sandri-Goldin RM (1992) Evidence that the herpes simplex virus immediate early protein ICP27 acts post-transcriptionally during infection to regulate gene expression. Virology 186:74–86

    Article  PubMed  CAS  Google Scholar 

  32. McCarthy AM, McMahan L, Schaffer PA (1989) Herpes simplex virus type 1 ICP27 deletion mutants exhibit altered patterns of transcription and are DNA deficient. J Virol 63:18–27

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Deutsche Forschungsgemeinschaft (DFG) grants CH 920/2-1 (P.C.), Sonderforschungsbereich 894 project A17 (F.Z.), and Saarland University HOMFORexcellent grant (P.C.). We thank Benjamin Stein, María Teresa Alonso, and Trese Leinders-Zufall for their contributions to the work described here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Chamero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chamero, P., Zufall, F. (2018). Virus-Mediated Overexpression of Vomeronasal Receptors and Functional Assessment by Live-Cell Calcium Imaging. In: Simoes de Souza, F., Antunes, G. (eds) Olfactory Receptors. Methods in Molecular Biology, vol 1820. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8609-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8609-5_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8608-8

  • Online ISBN: 978-1-4939-8609-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics